983 resultados para Visual programming languages
Resumo:
This work proposes an environment for programming programmable logic controllers applied to oil wells with BCP type method of artificially lifting. The environment will have an editor based in the diagram of sequential functions for programming of PLCs. This language was chosen due to the fact of being high-level and accepted by the international standard IEC 61131-3. The use of these control programs in real PLC will be possible with the use of an intermediate level of language based on XML specification PLCopen T6 XML. For the testing and validation of the control programs, an area should be available for viewing variables obtained through communication with a real PLC. Thus, the main contribution of this work is to develop a computational environment that allows: modeling, testing and validating the controls represented in SFC and applied in oil wells with BCP type method of artificially lifting
Resumo:
La « pensée mixte » est une approche de la composition caractérisée par l’interaction de trois pensées: la pensée instrumentale, la pensée électroacoustique et la pensée informatique. Elle prend la forme d’un réseau où le compositeur fait des aller-retours entre les trois pensées et réalise des équivalences paramétriques. La pensée instrumentale se rattache à la tradition de l’écriture occidentale, la pensée électroacoustique fait allusion aux pratiques du studio analogique et de la musique acousmatique, et la pensée informatique fait référence aux pratiques numériques de la programmation visuelle et de l’analyse spectrale. Des lieux communs existent où s’opèrent l’interaction des trois pensées: la notion du studio instrumental de Ivo Malec, la notion de musique concrète instrumentale de Helmut Lachenmann, la composition assistée par ordinateur, la musique spectrale, l’approche instrumentale par montage, la musique acousmatique s’inspirant de la tradition musicale écrite et les musiques mixtes. Ces domaines constituent les influences autour desquelles j’ai composé un corpus de deux cycles d’œuvres: Les Larmes du Scaphandre et le Nano-Cosmos. L’analyse des œuvres met en évidence la notion de « pensée mixte » en abordant la pensée électroacoustique dans ma pratique instrumentale, la pensée informatique dans ma pratique musicale, et la pensée instrumentale dans ma pratique électroacoustique.
Resumo:
La « pensée mixte » est une approche de la composition caractérisée par l’interaction de trois pensées: la pensée instrumentale, la pensée électroacoustique et la pensée informatique. Elle prend la forme d’un réseau où le compositeur fait des aller-retours entre les trois pensées et réalise des équivalences paramétriques. La pensée instrumentale se rattache à la tradition de l’écriture occidentale, la pensée électroacoustique fait allusion aux pratiques du studio analogique et de la musique acousmatique, et la pensée informatique fait référence aux pratiques numériques de la programmation visuelle et de l’analyse spectrale. Des lieux communs existent où s’opèrent l’interaction des trois pensées: la notion du studio instrumental de Ivo Malec, la notion de musique concrète instrumentale de Helmut Lachenmann, la composition assistée par ordinateur, la musique spectrale, l’approche instrumentale par montage, la musique acousmatique s’inspirant de la tradition musicale écrite et les musiques mixtes. Ces domaines constituent les influences autour desquelles j’ai composé un corpus de deux cycles d’œuvres: Les Larmes du Scaphandre et le Nano-Cosmos. L’analyse des œuvres met en évidence la notion de « pensée mixte » en abordant la pensée électroacoustique dans ma pratique instrumentale, la pensée informatique dans ma pratique musicale, et la pensée instrumentale dans ma pratique électroacoustique.
Resumo:
This dissertation explores the link between hate crimes that occurred in the United Kingdom in June 2017, June 2018 and June 2019 through the posts of a robust sample of Conservative and radical right users on Twitter. In order to avoid the traditional challenges of this kind of research, I adopted a four staged research protocol that enabled me to merge content produced by a group of randomly selected users to observe the phenomenon from different angles. I collected tweets from thirty Conservative/right wing accounts for each month of June over the three years with the help of programming languages such as Python and CygWin tools. I then examined the language of my data focussing on humorous content in order to reveal whether, and if so how, radical users online often use humour as a tool to spread their views in conditions of heightened disgust and wide-spread political instability. A reflection on humour as a moral occurrence, expanding on the works of Christie Davies as well as applying recent findings on the behavioural immune system on online data, offers new insights on the overlooked humorous nature of radical political discourse. An unorthodox take on the moral foundations pioneered by Jonathan Haidt enriched my understanding of the analysed material through the addition of a moral-based layer of enquiry to my more traditional content-based one. This convergence of theoretical, data driven and real life events constitutes a viable “collection of strategies” for academia, data scientists; NGO’s fighting hate crimes and the wider public alike. Bringing together the ideas of Davies, Haidt and others to my data, helps us to perceive humorous online content in terms of complex radical narratives that are all too often compressed into a single tweet.
Resumo:
The availability of a huge amount of source code from code archives and open-source projects opens up the possibility to merge machine learning, programming languages, and software engineering research fields. This area is often referred to as Big Code where programming languages are treated instead of natural languages while different features and patterns of code can be exploited to perform many useful tasks and build supportive tools. Among all the possible applications which can be developed within the area of Big Code, the work presented in this research thesis mainly focuses on two particular tasks: the Programming Language Identification (PLI) and the Software Defect Prediction (SDP) for source codes. Programming language identification is commonly needed in program comprehension and it is usually performed directly by developers. However, when it comes at big scales, such as in widely used archives (GitHub, Software Heritage), automation of this task is desirable. To accomplish this aim, the problem is analyzed from different points of view (text and image-based learning approaches) and different models are created paying particular attention to their scalability. Software defect prediction is a fundamental step in software development for improving quality and assuring the reliability of software products. In the past, defects were searched by manual inspection or using automatic static and dynamic analyzers. Now, the automation of this task can be tackled using learning approaches that can speed up and improve related procedures. Here, two models have been built and analyzed to detect some of the commonest bugs and errors at different code granularity levels (file and method levels). Exploited data and models’ architectures are analyzed and described in detail. Quantitative and qualitative results are reported for both PLI and SDP tasks while differences and similarities concerning other related works are discussed.
Resumo:
Slot and van Emde Boas Invariance Thesis states that a time (respectively, space) cost model is reasonable for a computational model C if there are mutual simulations between Turing machines and C such that the overhead is polynomial in time (respectively, linear in space). The rationale is that under the Invariance Thesis, complexity classes such as LOGSPACE, P, PSPACE, become robust, i.e. machine independent. In this dissertation, we want to find out if it possible to define a reasonable space cost model for the lambda-calculus, the paradigmatic model for functional programming languages. We start by considering an unusual evaluation mechanism for the lambda-calculus, based on Girard's Geometry of Interaction, that was conjectured to be the key ingredient to obtain a space reasonable cost model. By a fine complexity analysis of this schema, based on new variants of non-idempotent intersection types, we disprove this conjecture. Then, we change the target of our analysis. We consider a variant over Krivine's abstract machine, a standard evaluation mechanism for the call-by-name lambda-calculus, optimized for space complexity, and implemented without any pointer. A fine analysis of the execution of (a refined version of) the encoding of Turing machines into the lambda-calculus allows us to conclude that the space consumed by this machine is indeed a reasonable space cost model. In particular, for the first time we are able to measure also sub-linear space complexities. Moreover, we transfer this result to the call-by-value case. Finally, we provide also an intersection type system that characterizes compositionally this new reasonable space measure. This is done through a minimal, yet non trivial, modification of the original de Carvalho type system.
Resumo:
This thesis reports on the two main areas of our research: introductory programming as the traditional way of accessing informatics and cultural teaching informatics through unconventional pathways. The research on introductory programming aims to overcome challenges in traditional programming education, thus increasing participation in informatics. Improving access to informatics enables individuals to pursue more and better professional opportunities and contribute to informatics advancements. We aimed to balance active, student-centered activities and provide optimal support to novices at their level. Inspired by Productive Failure and exploring the concept of notional machine, our work focused on developing Necessity Learning Design, a design to help novices tackle new programming concepts. Using this design, we implemented a learning sequence to introduce arrays and evaluated it in a real high-school context. The subsequent chapters discuss our experiences teaching CS1 in a remote-only scenario during the COVID-19 pandemic and our collaborative effort with primary school teachers to develop a learning module for teaching iteration using a visual programming environment. The research on teaching informatics principles through unconventional pathways, such as cryptography, aims to introduce informatics to a broader audience, particularly younger individuals that are less technical and professional-oriented. It emphasizes the importance of understanding informatics's cultural and scientific aspects to focus on the informatics societal value and its principles for active citizenship. After reflecting on computational thinking and inspired by the big ideas of science and informatics, we describe our hands-on approach to teaching cryptography in high school, which leverages its key scientific elements to emphasize its social aspects. Additionally, we present an activity for teaching public-key cryptography using graphs to explore fundamental concepts and methods in informatics and mathematics and their interdisciplinarity. In broadening the understanding of informatics, these research initiatives also aim to foster motivation and prime for more professional learning of informatics.
Resumo:
A global italian pharmaceutical company has to provide two work environments that favor different needs. The environments will allow to develop solutions in a controlled, secure and at the same time in an independent manner on a state-of-the-art enterprise cloud platform. The need of developing two different environments is dictated by the needs of the working units. Indeed, the first environment is designed to facilitate the creation of application related to genomics, therefore, designed more for data-scientists. This environment is capable of consuming, producing, retrieving and incorporating data, furthermore, will support the most used programming languages for genomic applications (e.g., Python, R). The proposal was to obtain a pool of ready-togo Virtual Machines with different architectures to provide best performance based on the job that needs to be carried out. The second environment has more of a traditional trait, to obtain, via ETL (Extract-Transform-Load) process, a global datamodel, resembling a classical relational structure. It will provide major BI operations (e.g., analytics, performance measure, reports, etc.) that can be leveraged both for application analysis or for internal usage. Since, both architectures will maintain large amounts of data regarding not only pharmaceutical informations but also internal company informations, it would be possible to digest the data by reporting/ analytics tools and also apply data-mining, machine learning technologies to exploit intrinsic informations. The thesis work will introduce, proposals, implementations, descriptions of used technologies/platforms and future works of the above discussed environments.
Resumo:
The use of domain-specific languages (DSLs) has been proposed as an approach to cost-e ectively develop families of software systems in a restricted application domain. Domain-specific languages in combination with the accumulated knowledge and experience of previous implementations, can in turn be used to generate new applications with unique sets of requirements. For this reason, DSLs are considered to be an important approach for software reuse. However, the toolset supporting a particular domain-specific language is also domain-specific and is per definition not reusable. Therefore, creating and maintaining a DSL requires additional resources that could be even larger than the savings associated with using them. As a solution, di erent tool frameworks have been proposed to simplify and reduce the cost of developments of DSLs. Developers of tool support for DSLs need to instantiate, customize or configure the framework for a particular DSL. There are di erent approaches for this. An approach is to use an application programming interface (API) and to extend the basic framework using an imperative programming language. An example of a tools which is based on this approach is Eclipse GEF. Another approach is to configure the framework using declarative languages that are independent of the underlying framework implementation. We believe this second approach can bring important benefits as this brings focus to specifying what should the tool be like instead of writing a program specifying how the tool achieves this functionality. In this thesis we explore this second approach. We use graph transformation as the basic approach to customize a domain-specific modeling (DSM) tool framework. The contributions of this thesis includes a comparison of di erent approaches for defining, representing and interchanging software modeling languages and models and a tool architecture for an open domain-specific modeling framework that e ciently integrates several model transformation components and visual editors. We also present several specific algorithms and tool components for DSM framework. These include an approach for graph query based on region operators and the star operator and an approach for reconciling models and diagrams after executing model transformation programs. We exemplify our approach with two case studies MICAS and EFCO. In these studies we show how our experimental modeling tool framework has been used to define tool environments for domain-specific languages.
Resumo:
Genetic Programming (GP) is a widely used methodology for solving various computational problems. GP's problem solving ability is usually hindered by its long execution times. In this thesis, GP is applied toward real-time computer vision. In particular, object classification and tracking using a parallel GP system is discussed. First, a study of suitable GP languages for object classification is presented. Two main GP approaches for visual pattern classification, namely the block-classifiers and the pixel-classifiers, were studied. Results showed that the pixel-classifiers generally performed better. Using these results, a suitable language was selected for the real-time implementation. Synthetic video data was used in the experiments. The goal of the experiments was to evolve a unique classifier for each texture pattern that existed in the video. The experiments revealed that the system was capable of correctly tracking the textures in the video. The performance of the system was on-par with real-time requirements.
Resumo:
The premotor theory of attention claims that attentional shifts are triggered during response programming, regardless of which response modality is involved. To investigate this claim, event-related brain potentials (ERPs) were recorded while participants covertly prepared a left or right response, as indicated by a precue presented at the beginning of each trial. Cues signalled a left or right eye movement in the saccade task, and a left or right manual response in the manual task. The cued response had to be executed or withheld following the presentation of a Go/Nogo stimulus. Although there were systematic differences between ERPs triggered during covert manual and saccade preparation, lateralised ERP components sensitive to the direction of a cued response were very similar for both tasks, and also similar to the components previously found during cued shifts of endogenous spatial attention. This is consistent with the claim that the control of attention and of covert response preparation are closely linked. N1 components triggered by task-irrelevant visual probes presented during the covert response preparation interval were enhanced when these probes were presented close to cued response hand in the manual task, and at the saccade target location in the saccade task. This demonstrates that both manual and saccade preparation result in spatially specific modulations of visual processing, in line with the predictions of the premotor theory.
Resumo:
We explore the relationships between the construction of a work of art and the crafting of a computer program in Java and suggest that the structure of paintings and drawings may be used to teach the fundamental concepts of computer programming. This movement "from Art to Science", using art to drive computing, complements the common use of computing to inform art. We report on initial experiences using this approach with undergraduate and postgraduate students. An embryonic theory of the correspondence between art and computing is presented and a methodology proposed to develop this project further.
Resumo:
Groups of Grade 3 children were tested on measures of word-level literacy and undertook tasks that required the ability to associate sounds with letter sequences and that involved visual, auditory and phonological-processing skills. These groups came from different language backgrounds in which the language of instruction was Arabic, Chinese, English, Hungarian or Portuguese. Similar measures were used across the groups, with tests being adapted to be appropriate for the language of the children. Findings indicated that measures of decoding and phonological-processing skills were good predictors of word reading and spelling among Arabic- and English-speaking children, but were less able to predict variability in these same early literacy skills among Chinese- and Hungarian-speaking children, and were better at predicting variability in Portuguese word reading than spelling. Results were discussed with reference to the relative transparency of the script and issues of dyslexia assessment across languages. Overall, the findings argue for the need to take account of features of the orthography used to represent a language when developing assessment procedures for a particular language and that assessment of word-level literacy skills and a phonological perspective of dyslexia may not be universally applicable across all language contexts. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Atreladas a uma estética própria e “efeitos de verdade” (PELLEJERO, 2008), as videografias turísticas acabam por compor linguagens fartamente informativas sobre aquilo que se quer dizer sobre os lugares. Suas cenas são as apontadas para propagandear uma imagem a ser consumida, delas esperam-se o melhor ângulo a ser fotografado, experiências únicas e roteiros alternativos e naturais para se conhecer o lugar. Sendo assim, são as imagens turísticas, na atualidade, linguagens potentes para se entender as narrativas sobre os lugares, suas imaginações espaciais, bem como as construções de ficções sobre determinada realidade. Uma vez envolvidas as produções de ficções hegemônicas, os vídeos turísticos e as imaginações espaciais que temos deles podem promover modos cristalizados de se pensar o espaço; distanciando-se dos propósitos de entender o espaço a partir das suas conexões-desconexões e multiplicidade de trajetórias (MASSEY, 2008). Nesse contexto, essa pesquisa tem como objetivo principal discutir como os vídeos turísticos, em especial dois vídeos da atual campanha da Secretaria de Turismo do Espírito Santo, “Descubra o Espírito Santo”, apresentam uma imaginação espacial. Também seguem como interesse: refletir e analisar a política visual e a estética das videografias turísticas; entender e analisar a produção de uma ficção para construção e mobilização de uma imaginação espacial e estudar autores e produções videográficas que se dedicaram a pensar possibilidades outras de mobilizar e desterritorializar uma imaginação espacial e as estéticas videográficas.