892 resultados para Visible spectroscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica, Especialidade em Engenharia Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for more efficient illumination systems has led to the proliferation of Solid-State Lighting (SSL) systems, which offer optimized power consumption. SSL systems are comprised of LED devices which are intrinsically fast devices and permit very fast light modulation. This, along with the congestion of the radio frequency spectrum has paved the path for the emergence of Visible Light Communication (VLC) systems. VLC uses free space to convey information by using light modulation. Notwithstanding, as VLC systems proliferate and cost competitiveness ensues, there are two important aspects to be considered. State-of-the-art VLC implementations use power demanding PAs, and thus it is important to investigate if regular, existent Switched-Mode Power Supply (SMPS) circuits can be adapted for VLC use. A 28 W buck regulator was implemented using a off-the-shelf LED Driver integrated circuit, using both series and parallel dimming techniques. Results show that optical clock frequencies up to 500 kHz are achievable without any major modification besides adequate component sizing. The use of an LED as a sensor was investigated, in a short-range, low-data-rate perspective. Results show successful communication in an LED-to-LED configuration, with enhanced range when using LED strings as sensors. Besides, LEDs present spectral selective sensitivity, which makes them good contenders for a multi-colour LED-to-LED system, such as in the use of RGB displays and lamps. Ultimately, the present work shows evidence that LEDs can be used as a dual-purpose device, enabling not only illumination, but also bi-directional data communication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AuNPs are versatile systems used for different biomedical application including imaging, drug and gene delivery. These systems support the intracellular transport of active molecules, a step that is considered one of the crucial problems in drug delivery. Nevertheless, in order to design optimal multifunctional AuNPs for specific and efficient nanomedicine applications, the mechanism by which AuNPs interact with living cells must be fully understand. The main goal of this work consisted in the assessment of the cellular uptake mechanism of 14 nm spherical AuNPs by A549 cells, through fluorescent spectroscopy and microscopy, in combination with quantitative analysis by ICP-MS. TAMRA labeled AuNPs were characterized by UV-visible and fluorescent spectroscopy and the final hydrodynamic diameter of 22.5 ± 0.33 nm was obtained by DLS. Regarding the cellular uptake studies, the AuNPs presented a fast cellular uptake kinetics reaching a saturation point after 6 hours of incubation in A549 cells. Further investigation concerning the internalization mechanism of this AuNPs was evaluated using specific inhibitors for different endocytic pathways. Optimal inhibition was achieved using chlorpromazine, inhibitor of clathrin-mediated endocytosis, resulting in a 23.5 % inhibition of AuNPs after 1 hour of incubation. This preliminary result obtained by fluorescent spectroscopy suggests that these AuNPs were predominantly uptake by clathrin-mediated endocytosis, meaning that other endocytic pathways must be involved in the cellular uptake of this AuNPs. In what cell viability is concern, the prepared AuNPs and the endocytic inhibitors revealed no significant effect on the cell viability in A549 cell line.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schizophrenic patients undergoing proton magnetic resonance spectroscopy show alterations in N-acetyl aspartate levels in several brain regions, indicating neuronal dysfunction. The present review focuses on the main proton magnetic resonance spectroscopy studies in the frontal lobe of schizophrenics. A MEDLINE search, from 1991 to March 2004, was carried out using the key-words spectroscopy and schizophrenia and proton and frontal. In addition, articles cited in the reference list of the studies obtained through MEDLINE were included. As a result, 27 articles were selected. The results were inconsistent, 19 papers reporting changes in the N-acetyl aspartate levels, while 8 reported no change. Methodological analysis led to the conclusion that the discrepancy may be due the following factors: (i) number of participants; (ii) variation in the clinical and demographic characteristics of the groups; (iii) little standardization of the acquisition parameters of spectroscopy. Overall, studies that fulfill strict methodological criteria show N-acetyl aspartate decrease in the frontal lobe of male schizophrenics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in -carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis--carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (redfleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on sedimentological and geochemical data, this work relates spectrophotometric measurements with sediment composition and its application in palaeoecological studies of Amazon wetlands. The CIELAB values are directly related to mineralogical and chemical composition, mostly involving quartz, iron oxyhydroxides and sulfides (e.g. pyrite), and total organic carbon. Total organic carbon contents between 0.4-1%, 1-2%, 3-5% and 15-40% were related to L* (lightness) data of 27, 26-15, 7-10 and 7 or less, respectively. The CIELAB values of a deposit in Marabá, Pará, were proportional to variations in quartz and total organic carbon contents, but changes in zones of similar color, mainly in the +a* (red) and +b* (yellow) values of deposits in Calçoene, Amapá and Soure, Pará, indicate a close relationship between total organic carbon content and iron oxyhydroxides and sulfides. Furthermore, the Q7/4 diagram (ratio between the % re?ectance value at 700 nm to that at 400 nm, coupled with L*) indicated iron-rich sediments in the bioturbated mud facies of the Amapá deposit, bioturbated mud and bioturbated sand facies of Soure deposit, and cross-laminated sand and massive sand facies of the Marabá core. Also, organic-rich sediments were found in the bioturbated mud facies of the Amapá deposit, lenticular heterolithic and bioturbated mud facies of the Soure deposit, and laminated mud and peat facies of the Marabá deposit. At the Marabá site, the data suggest an autochthonous influence with peat formation. The coastal wetland sites at Marajó and Amapá represent the development of a typical tidal flat setting with sulfide and iron oxyhydroxides formation during alternated flooding and drying.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CONSPECTUS: Two-dimensional (2D) crystals derived from transition metal dichalcogenides (TMDs) are intriguing materials that offer a unique platform to study fundamental physical phenomena as well as to explore development of novel devices. Semiconducting group 6 TMDs such as MoS2 and WSe2 are known for their large optical absorption coefficient and their potential for high efficiency photovoltaics and photodetectors. Monolayer sheets of these compounds are flexible, stretchable, and soft semiconductors with a direct band gap in contrast to their well-known bulk crystals that are rigid and hard indirect gap semiconductors. Recent intense research has been motivated by the distinct electrical, optical, and mechanical properties of these TMD crystals in the ultimate thickness regime. As a semiconductor with a band gap in the visible to near-IR frequencies, these 2D MX2 materials (M = Mo, W; X = S, Se) exhibit distinct excitonic absorption and emission features. In this Account, we discuss how optical spectroscopy of these materials allows investigation of their electronic properties and the relaxation dynamics of excitons. We first discuss the basic electronic structure of 2D TMDs highlighting the key features of the dispersion relation. With the help of theoretical calculations, we further discuss how photoluminescence energy of direct and indirect excitons provide a guide to understanding the evolution of the electronic structure as a function of the number of layers. We also highlight the behavior of the two competing conduction valleys and their role in the optical processes. Intercalation of group 6 TMDs by alkali metals results in the structural phase transformation with corresponding semiconductor-to-metal transition. Monolayer TMDs obtained by intercalation-assisted exfoliation retains the metastable metallic phase. Mild annealing, however, destabilizes the metastable phase and gradually restores the original semiconducting phase. Interestingly, the semiconducting 2H phase, metallic 1T phase, and a charge-density-wave-like 1T' phase can coexist within a single crystalline monolayer sheet. We further discuss the electronic properties of the restacked films of chemically exfoliated MoS2. Finally, we focus on the strong optical absorption and related exciton relaxation in monolayer and bilayer MX2. Monolayer MX2 absorbs as much as 30% of incident photons in the blue region of the visible light despite being atomically thin. This giant absorption is attributed to nesting of the conduction and valence bands, which leads to diversion of optical conductivity. We describe how the relaxation pathway of excitons depends strongly on the excitation energy. Excitation at the band nesting region is of unique significance because it leads to relaxation of electrons and holes with opposite momentum and spontaneous formation of indirect excitons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inspired by nature, in particular by the marine mussels adhesive proteins (MAPs) and by the tough brick-and-mortar nacre-like structure, novel multilayered films are prepared in the present work. Organic-inorganic multilayered films, with an architecture similar to nacre based on bioactive glass nanoparticles (BG), chitosan and hyaluronic acid modified with catechol groups, which are the main responsible for the outstanding adhesion in MAPs, are developed for the first time. The biomimetic conjugate is prepared by carbodiimide chemistry and analyzed by ultraviolet-visible spectrophotometry. The build-up of the multilayered films is monitored with a quartz crystal microbalance with dissipation monitoring and their topography is characterized by atomic force microscopy. The mechanical properties reveal that the films containing catechol groups and BG present an enhanced adhesion. Moreover, the bioactivity of the films upon immersion in a simulated body fluid solution for 7 days is evaluated by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. It was found that the constructed films promote the formation of bone-like apatite in vitro. Such multifunctional mussel inspired LbL films, which combine enhanced adhesion and bioactivity, could be potentially used as coatings of a variety of implants for orthopedic applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as Nuclear Magnetic Resonance, Gas or Liquid Chromatography, Mass Spectrometry, Infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La idea principal del proyecto abarca el estudio de parámetros y fenómenos físicos. Los avances logrados se aplicarán al desarrollo de software y metodologías para cuantificación de materiales mediante microanálisis con sonda de electrones y microscopía electrónica de barrido. El microanálisis no es una técnica absoluta, sino que requiere de estándares de referencia, para obviar el uso de ciertos parámetros geométricos y atómicos difíciles de conocer con una precisión adecuada. Para contar con un método sin estándares debe abordarse la determinación de parámetros atómicos e instrumentales, que es uno de los aspectos que se desea encarar en este proyecto. Por otro lado, también se pretende incluir los parámetros estudiados en un software de cuantificación desarrollado por integrantes del proyecto. Otro de los propósitos del plan de trabajo es estudiar la potencialidad de la resolución espacial de una microsonda de electrones con el fin de desarrollar una metodología para caracterizar interfases, bordes de granos e inclusiones, con resolución submicrométrica, ya que los métodos tradicionales de cuantificación se restringen al caso de muestras planas y homogéneas dentro del volumen de interacción, pero la caracterización de inhomogeneidades a nivel micrométrico no ha sido desarrollada todavía, salvo algunas excepciones. The main idea of this project involves the study of physical parameters and phenomena. The concretion of the different goals will permit the elaboration of softeare and methodologies for materials characterization by means of electron probe microanalysis and scanning microscopy. Electron probe microanalysis is not an absolute technique, but requires reference standards in order not to involve certain geometrical and atomic parameters for which high uncertainties cannot be avoided. In order to have standardless method, the determination of atomic and instrumental parameters must be accomplished, as will be faced through this project. Complementary, the parameters studied will be included in a quantification software developed in our research group of FaMAF. Another objective of this activity plan is to study the spatial resolution potentiality of a focalized electron beam, with the aim of characterizing interphases, grain boundaries and inclusions with submicron sensitivity, since the traditional quantification procedures are restricted to flat homogeneous samples, whereas the characterization of inhomogeneities has not been developed yet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IDENTIFICACIÓN DEL PROBLEMA DE ESTUDIO. Las sustancias orgánicas solubles en agua no biodegradables tales como ciertos herbicidas, colorantes industriales y metabolitos de fármacos de uso masivo son una de las principales fuentes de contaminación en aguas subterráneas de zonas agrícolas y en efluentes industriales y domésticos. Las reacciones fotocatalizadas por irradiación UV-visible y sensitizadores orgánicos e inorgánicos son uno de los métodos más económicos y convenientes para la descomposición de contaminantes en subproductos inocuos y/o biodegradables. En muchas aplicaciones es deseable un alto grado de especificidad, efectividad y velocidad de degradación de un dado agente contaminante que se encuentra presente en una mezcla compleja de sustancias orgánicas en solución. En particular son altamente deseables sistemas nano/micro -particulados que formen suspensiones acuosas estables debido a que estas permiten una fácil aplicación y una eficaz acción descontaminante en grandes volúmenes de fluidos. HIPÓTESIS Y PLANTEO DE LOS OBJETIVOS. El objetivo general de este proyecto es desarrollar sistemas nano/micro particulados formados por polímeros de impresión molecular (PIMs) y foto-sensibilizadores (FS). Un PIMs es un polímero especialmente sintetizado para que sea capaz de reconocer específicamente un analito (molécula plantilla) determinado. La actividad de unión específica de los PIMs en conjunto con la capacidad fotocatalizadora de los sensibilizadores pueden ser usadas para lograr la fotodescomposición específica de moléculas “plantilla” (en este caso un dado contaminante) en soluciones conteniendo mezclas complejas de sustancias orgánicas. MATERIALES Y MÉTODOS A UTILIZAR. Se utilizaran técnicas de polimerización en mini-emulsión para sintetizar los sistemas nano/micro PIM-FS para buscar la degradación de ciertos compuestos de interés. Para caracterizar eficiencias, mecanismos y especificidad de foto-degradación en dichos sistemas se utilizan diversas técnicas espectroscópicas (estacionarias y resueltas en el tiempo) y de cromatografía (HPLC y GC). Así mismo, para medir directamente distribuciones de afinidades de unión y eficiencia de foto-degradación se utilizaran técnicas de fluorescencia de molécula/partícula individual. Estas determinaciones permitirán obtener resultados importantes al momento de analizar los factores que afectan la eficiencia de foto-degradación (nano/micro escala), tales como cantidad y ubicación de foto- sensibilizadores en las matrices poliméricas y eficiencia de unión de la plantilla y los productos de degradación al PIM. RESULTADOS ESPERADOS. Los estudios propuestos apuntan a un mejor entendimiento de procesos foto-iniciados en entornos nano/micro-particulados para aplicar dichos conocimientos al diseño de sistemas optimizados para la foto-destrucción selectiva de contaminantes acuosos de relevancia social; tales como herbicidas, residuos industriales, metabolitos de fármacos de uso masivo, etc. IMPORTANCIA DEL PROYECTO. Los sistemas nano/micro-particulados PIM-FS que se propone desarrollar en este proyecto se presentan como candidatos ideales para tratamientos específicos de efluentes industriales y domésticos en los cuales se desea lograr la degradación selectiva de compuestos orgánicos. Los conocimientos adquiridos serán indispensables para construir una plataforma versátil de sistemas foto-catalíticos específicos para la degradación de diversos contaminantes orgánicos de interés social. En lo referente a la formación de recursos humanos, el proyecto propuesto contribuirá en forma directa a la formación de 3 estudiantes de postgrado y 2 estudiantes de grado. En las capacidades institucionales se contribuirá al acondicionamiento del Laboratorio para Microscopía Óptica Avanzada (LMOA) en el Dpto. de Química de la UNRC y al montaje de un sistema de microscopio de fluorescencia que permitirá la aplicación de técnicas avanzadas de espectroscopia de fluorescencia de molecula individual. Water-soluble organic molecules such as certain non-biodegradable herbicides, industrial dyes and metabolites of widespread use drugs are a major source of pollution in groundwater from agricultural areas and in industrial and domestic effluents. Photo-catalytic reactions by UV-visible irradiation and organic sensitizers are one of the most economical and convenient methods for the decomposition of pollutants into harmless byproducts. In many applications it is highly desirable a high degree of specificity, effectiveness and speed of degradation of specific pollutants present in a complex mixture. In particular nano/micro-particles systems that form stable aqueous suspensions are highly desirable because they allow for easy application and effective decontamination of large volumes of fluids. Herein we propose the development of nano/micro particles composed by molecularly imprinted polymers (MIP) and photo-sensitizers (PS). The specific binding of MIP and the photo-catalytic ability of the sensitizers are used to achieve the photo-decomposition of specific "template" molecules in complex mixtures. Mini-emulsion polymerization techniques will be used to synthesize nano/micro MIP-FS systems. Spectroscopy (steady-state and time resolved) and chromatography (GC and HPLC) will be used to characterize efficiency, mechanisms and specificity of photo-degradation in these systems. In addition single molecule/particle fluorescence spectroscopy techniques will be used to directly measure distributions of binding affinities and photo-degradation efficiency in individual particles. The proposed studies point to a more detailed understanding of the factors affecting the photo-degradation efficiency in nano/micro-particles and to apply that knowledge in the design of optimized systems for photo-selective destruction of socially relevant aqueous pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Naturwiss., Diss., 2012