854 resultados para Use and habitat selection
Resumo:
Background: Various evolutionary models have been proposed to interpret the fate of paralogous duplicates, which provides substrates on which evolution selection could act. In particular, domestication, as a special selection, has played important role in crop cultivation with divergence of many genes controlling important agronomic traits. Recent studies have indicated that a pair of duplicate genes was often sub-functionalized from their ancestral functions held by the parental genes. We previously demonstrated that the rice cell-wall invertase (CWI) gene GIF1 that plays an important role in the grain-filling process was most likely subjected to domestication selection in the promoter region. Here, we report that GIF1 and another CWI gene OsCIN1 constitute a pair of duplicate genes with differentiated expression and function through independent selection. Results: Through synteny analysis, we show that GIF1 and another cell-wall invertase gene OsCIN1 were paralogues derived from a segmental duplication originated during genome duplication of grasses. Results based on analyses of population genetics and gene phylogenetic tree of 25 cultivars and 25 wild rice sequences demonstrated that OsCIN1 was also artificially selected during rice domestication with a fixed mutation in the coding region, in contrast to GIF1 that was selected in the promoter region. GIF1 and OsCIN1 have evolved into different expression patterns and probable different kinetics parameters of enzymatic activity with the latter displaying less enzymatic activity. Overexpression of GIF1 and OsCIN1 also resulted in different phenotypes, suggesting that OsCIN1 might regulate other unrecognized biological process. Conclusion: How gene duplication and divergence contribute to genetic novelty and morphological adaptation has been an interesting issue to geneticists and biologists. Our discovery that the duplicated pair of GIF1 and OsCIN1 has experiencedsub-functionalization implies that selection could act independently on each duplicate towards different functional specificity, which provides a vivid example for evolution of genetic novelties in a model crop. Our results also further support the established hypothesis that gene duplication with sub-functionalization could be one solution for genetic adaptive conflict.
Resumo:
The application of high performance textiles has grown significantly in the last 10 to 15 years. Various research groups throughout the United Kingdom, such as the Department of Trade and Industry, have identified technical textiles as a field for future development. There is little design guidance for joining of flexible materials or general property models that can be applied to theses materials. This lack is due to the large diversity of properties, structures and resulting behaviours of the materials that are classified as "Flexible Materials". This dissertation explores the issues that are involved in characterising the materials at the fibre, bulk and textile levels. Different units of measurement are used for each stage of the manufacturing process of flexible materials and this disparity creates problems when trying to make general comparisons (e.g. comparing textiles to polymer films). Thus, a possible solution to this is to create selection charts that allow designers to compare the strength of materials for a given mass per unit area. A design tool was created using the Cambridge Engineering Selector (CES) software to enable the selection of joining processes for material. The tool is effective in selecting a reduced number of viable joining processes. Through case studies it was shown that designers are required to examine the selected processes (identified by the software) in greater detail - in particular the economics and geometry of the joint - in order to identify the optimum joining process.
Resumo:
In one of our recent studies, two HCV genotype 6 variants were identified in patients from Hong Kong and Guangxi in southern China, with injection drug use and HIV-1 co-infection. We report the complete genomic sequences for these two variants: GX004 and
Resumo:
One of the most endangered populations of Black-necked Cranes (Grus nigricollis), the central population, is declining due to habitat loss and degradation, but little is known about their space use patterns and habitat preferences. We examined the space use and habitat preferences of Black-necked Cranes during the winter of 2007-2008 at the Napahai wetland in northwest Yunnan, China, where approximately 300 Black-necked Cranes (>90% of the total central population) spent the winter. Euclidean distance analysis was employed to determine the habitat preferences of Black-necked Cranes, and a local nearest-neighbor, convex-hull construction method was used to examine space use. Our results indicate that Black-necked Cranes preferred shallow marsh and wet meadow habitats and avoided farmland and dry grassland. Core-use areas (50% isopleths) and total-use areas (100% isopleths) accounted for only 1.2% and 28.2% of the study area, respectively. We recommend that habitat protection efforts focus on shallow marsh and wet meadow habitats to maintain preferred foraging sites. Core-use areas, such as the primary foraging areas of Black-necked Cranes, should be designated as part of the core zone of the nature reserve. Monthly shifts in the core-use areas of the cranes also indicate that the reserve should be large enough to permit changes in space use. In addition to preserving habitat, government officials should also take measures to decrease human activity in areas used by foraging Black-necked Cranes.
Resumo:
Healthcare systems worldwide face a wide range of challenges, including demographic change, rising drug and medical technology costs, and persistent and widening health inequalities both within and between countries. Simultaneously, issues such as professional silos, static medical curricula, and perceptions of "information overload" have made it difficult for medical training and continued professional development (CPD) to adapt to the changing needs of healthcare professionals in increasingly patient-centered, collaborative, and/or remote delivery contexts. In response to these challenges, increasing numbers of medical education and CPD programs have adopted e-learning approaches, which have been shown to provide flexible, low-cost, user-centered, and easily updated learning. The effectiveness of e-learning varies from context to context, however, and has also been shown to make considerable demands on users' motivation and "digital literacy" and on providing institutions. Consequently, there is a need to evaluate the effectiveness of e-learning in healthcare as part of ongoing quality improvement efforts. This article outlines the key issues for developing successful models for analyzing e-health learning.