854 resultados para Underwater exploration.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study on the effect of A.C. field on Puntius ticto, Heteropneustis fossilis and Tilapta mossambica was carried out using a slowly rising field intensity. Well defined reactions appeared in the species of fish with slight specific variations, depending on their orientation in the electrical field, on reaching the field intensity to specific value. These reactions can be distinguished as first reaction, when the fish perceive the surrounding field, jerky swimming when parallel to the current lines (longitudinal oscillotaxis), the static position finally adopted by the fish sooner or latter depending on the potential gradient (transverse oscillotaxis), and a state of muscular rigidity (tetanus). After switching off the current, a hypnotic condition prevailed in the treated fishes before returning to their normal swimming condition. The orientation of fish body in the field had an important bearing on the behaviour reactions and current thresholds necessary for those reactions. Initial reaction, jerky swimming between electrodes and hypnosis after stoppage of current appeared in fishes earlier when the fish body was in parallel to the current lines, whereas fishes responded to transverse oscillotaxis quickly when perpendicular to current lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response to external electric field (D. C.) of three different varieties of fish namely Puntius ticto, Heteropneustis fossilis and Tilapia mossambica having different anatomical and behavioural characteristics were studied. Clearly distinguished reactions occurred one after another m all the varieties of fish with the increase in field intensity with minor specific variations. These reactions can be broadly classified into initial start (first reaction), forced swimming (galvanotaxis), slackening of body muscle (galvanonarcosis) and state of muscular rigidity (tetanus). The orientation of the organism (projection of nervous element) to the surrounding field has been found to have important bearing on the behaviour reactions. Clearly differentiated anodic taxis and true narcosis set in when fish body axis was parallel to the lines of current conduction. But with greater angle between the body axis and the current lines, fish did not show well marked reactions. Fish body, when perpendicular to current lines responded for anodic curvature and off balance swimming followed by tetanus.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experience-dependent long-lasting increases in excitatory synaptic transmission in the hippocampus are believed to underlie certain types of memory(1-3). Whereas stimulation of hippocampal pathways in freely moving rats can readily elicit a long-term potentiation (LTP) of transmission that may last for weeks, previous studies have failed to detect persistent increases in synaptic efficacy after hippocampus-mediated learning(4-6). As changes in synaptic efficacy are contingent on the history of plasticity at the synapses(7), we have examined the effect of experience-dependent hippocampal activation on transmission after the induction of LTP, We show that exploration of a new, non-stressful environment rapidly induces a complete and persistent reversal of the expression of high-frequency stimulation-induced early-phase LTP in the CA1 area of the hippocampus, without affecting baseline transmission in a control pathway. LTP expression is not affected by exploration of familiar environments. We found that spatial exploration affected LTP within a defined time window because neither the induction of LTP nor the maintenance of long-established LTP was blocked. The discovery of a novelty-induced reversal of LTP expression provides strong evidence that extensive long-lasting decreases in synaptic efficacy may act in tandem with enhancements at selected synapses to allow the detection and storage of new information by the hippocampus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past 50 years, economic and technological developments have dramatically increased the human contribution to ambient noise in the ocean. The dominant frequencies of most human-made noise in the ocean is in the low-frequency range (defined as sound energy below 1000Hz), and low-frequency sound (LFS) may travel great distances in the ocean due to the unique propagation characteristics of the deep ocean (Munk et al. 1989). For example, in the Northern Hemisphere oceans low-frequency ambient noise levels have increased by as much as 10 dB during the period from 1950 to 1975 (Urick 1986; review by NRC 1994). Shipping is the overwhelmingly dominant source of low-frequency manmade noise in the ocean, but other sources of manmade LFS including sounds from oil and gas industrial development and production activities (seismic exploration, construction work, drilling, production platforms), and scientific research (e.g., acoustic tomography and thermography, underwater communication). The SURTASS LFA system is an additional source of human-produced LFS in the ocean, contributing sound energy in the 100-500 Hz band. When considering a document that addresses the potential effects of a low-frequency sound source on the marine environment, it is important to focus upon those species that are the most likely to be affected. Important criteria are: 1) the physics of sound as it relates to biological organisms; 2) the nature of the exposure (i.e. duration, frequency, and intensity); and 3) the geographic region in which the sound source will be operated (which, when considered with the distribution of the organisms will determine which species will be exposed). The goal in this section of the LFA/EIS is to examine the status, distribution, abundance, reproduction, foraging behavior, vocal behavior, and known impacts of human activity of those species may be impacted by LFA operations. To focus our efforts, we have examined species that may be physically affected and are found in the region where the LFA source will be operated. The large-scale geographic location of species in relation to the sound source can be determined from the distribution of each species. However, the physical ability for the organism to be impacted depends upon the nature of the sound source (i.e. explosive, impulsive, or non-impulsive); and the acoustic properties of the medium (i.e. seawater) and the organism. Non-impulsive sound is comprised of the movement of particles in a medium. Motion is imparted by a vibrating object (diaphragm of a speaker, vocal chords, etc.). Due to the proximity of the particles in the medium, this motion is transmitted from particle to particle in waves away from the sound source. Because the particle motion is along the same axis as the propagating wave, the waves are longitudinal. Particles move away from then back towards the vibrating source, creating areas of compression (high pressure) and areas of rarefaction (low pressure). As the motion is transferred from one particle to the next, the sound propagates away from the sound source. Wavelength is the distance from one pressure peak to the next. Frequency is the number of waves passing per unit time (Hz). Sound velocity (not to be confused with particle velocity) is the impedance is loosely equivalent to the resistance of a medium to the passage of sound waves (technically it is the ratio of acoustic pressure to particle velocity). A high impedance means that acoustic particle velocity is small for a given pressure (low impedance the opposite). When a sound strikes a boundary between media of different impedances, both reflection and refraction, and a transfer of energy can occur. The intensity of the reflection is a function of the intensity of the sound wave and the impedances of the two media. Two key factors in determining the potential for damage due to a sound source are the intensity of the sound wave and the impedance difference between the two media (impedance mis-match). The bodies of the vast majority of organisms in the ocean (particularly phytoplankton and zooplankton) have similar sound impedence values to that of seawater. As a result, the potential for sound damage is low; organisms are effectively transparent to the sound – it passes through them without transferring damage-causing energy. Due to the considerations above, we have undertaken a detailed analysis of species which met the following criteria: 1) Is the species capable of being physically affected by LFS? Are acoustic impedence mis-matches large enough to enable LFS to have a physical affect or allow the species to sense LFS? 2) Does the proposed SURTASS LFA geographical sphere of acoustic influence overlap the distribution of the species? Species that did not meet the above criteria were excluded from consideration. For example, phytoplankton and zooplankton species lack acoustic impedance mis-matches at low frequencies to expect them to be physically affected SURTASS LFA. Vertebrates are the organisms that fit these criteria and we have accordingly focused our analysis of the affected environment on these vertebrate groups in the world’s oceans: fishes, reptiles, seabirds, pinnipeds, cetaceans, pinnipeds, mustelids, sirenians (Table 1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores risk management in global industrial investment by identifying linkages and gaps between theories and practices. It identifies opportunities for further development of the field. Three related bodies of literature have been reviewed: risk management, global manufacturing and investment. The review suggests that risk management in global manufacturing is overlooked in the literature; that existing theoretical risk management processes are not well developed in the global manufacturing context and that the investment literature applies mainly to financial risk assessment rather than investment risk management structures. Further, there appears to be a serious lack of systematic industrial risk management in investment decision making. This article highlights the opportunities to deploy current good practices more effectively as well as the need to develop more robust theories of industrial investment risk management. The approach adopted to investigate this multidisciplinary topic included a historical review of literature to understand the diverse background of theoretical development. A case study research approach was adopted to collect data, involving four global manufacturing companies and one risk management advisory company to observe the patterns and rationale of current practices. Supporting arguments from secondary data sources reinforced the findings. The research focuses risk management in global industrial investment. It links theories with practice to understand the existing knowledge gap and proposes key research themes for further research. © 2013 Macmillan Publishers Ltd. 1460-3799 Risk Management.