972 resultados para Ultrafast MRI
Resumo:
To understand the molecular origins of diseases caused by ultraviolet and visible light, and also to develop photodynamic therapy, it is important to resolve the mechanism of photoinduced DNA damage. Damage to DNA bound to a photosensitizer molecule frequently proceeds by one-electron photo-oxidation of guanine, but the precise dynamics of this process are sensitive to the location and the orientation of the photosensitizer, which are very difficult to define in solution. To overcome this, ultrafast time-resolved infrared (TRIR) spectroscopy was performed on photoexcited ruthenium polypyridyl–DNA crystals, the atomic structure of which was determined by X-ray crystallography. By combining the X-ray and TRIR data we are able to define both the geometry of the reaction site and the rates of individual steps in a reversible photoinduced electron-transfer process. This allows us to propose an individual guanine as the reaction site and, intriguingly, reveals that the dynamics in the crystal state are quite similar to those observed in the solvent medium.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
This work investigates the problem of feature selection in neuroimaging features from structural MRI brain images for the classification of subjects as healthy controls, suffering from Mild Cognitive Impairment or Alzheimer’s Disease. A Genetic Algorithm wrapper method for feature selection is adopted in conjunction with a Support Vector Machine classifier. In very large feature sets, feature selection is found to be redundant as the accuracy is often worsened when compared to an Support Vector Machine with no feature selection. However, when just the hippocampal subfields are used, feature selection shows a significant improvement of the classification accuracy. Three-class Support Vector Machines and two-class Support Vector Machines combined with weighted voting are also compared with the former and found more useful. The highest accuracy achieved at classifying the test data was 65.5% using a genetic algorithm for feature selection with a three-class Support Vector Machine classifier.
Resumo:
The quality control optimization of medical processes that use ionizing radiation in the treatment of diseases like cancer is a key element for patient safety and success of treatment. The major medical application of radiation is radiotherapy, i.e. the delivery of dose levels to well-defined target tissues of a patient with the purpose of eliminating a disease. The need of an accurate tumour-edge definition with the purpose of preserving healthy surrounding tissue demands rigorous radiation treatment planning. Dosimetric methods are used for dose distribution mapping region of interest to assure that the prescribed dose and the irradiated region are correct. The Fricke gel (FXG) is the main dosimeter that supplies visualization of the three-dimensional (3D) dose distribution. In this work the dosimetric characteristics of the modified Fricke dosimeter produced at the Radiation Metrology Centre of the Institute of Energetic and Nuclear Research (IPEN) such as gel concentration dose response dependence, xylenol orange addition influence, dose response between 5 and 50Gy and signal stability were evaluated by magnetic resonance imaging (MRI). Using the same gel solution, breast simulators (phantoms) were shaped and absorbed dose distributions were imaged by MRI at the Nuclear Resonance Laboratory of the Physics Institute of Sao Paulo University. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We report a pump-probe study of the two-photon induced reflectivity changes in bis (n-butylimido) perylene thin films. To enhance the two-photon excitation we deposited bis (n-butylimido) perylene films on top of gold nanoislands. The observed transient response in the reflectivity spectrum of bis (n-butylimido) perylene is due to a depletion of the molecule`s ground state and excited state absorption.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: The aim of the present study was to describe the clinical and MRI findings of the temporomandibular joint (TMJ) in patients with major depressive disorders (MDDs) of the non-psychotic type.Methods: 40 patients (80 TMJs) who were diagnosed as having MDDs were selected for this study. The clinical examination of the TMJs was conducted according to the research diagnostic criteria and temporomandibular disorders (TMDs). The MRIs were obtained bilaterally in each patient with axial, parasagittal and paracoronal sections within a real-time dynamic sequence. Two trained oral radiologists assessed all images. For statistical analyses, Fisher's exact test and chi(2) test were applied (alpha = 0.05).Results: Migraine was reported in 52.5% of subjects. Considering disc position, statistically significant differences between opening patterns with and without alteration (p = 0.00) and between present and absent joint noises (p = 0.00) were found. Regarding muscular pain, patients with and without abnormalities in disc function and patients with and without abnormalities in disc position were not statistically significant (p = 0.42 and p = 0.40, respectively). Significant differences between mandibular pathway with and without abnormalities (p=0.00) and between present and absent joint noises (p=0.00) were observed.Conclusion: Based on the preliminary results observed by clinical and MRI examination of the TMJ, no direct relationship could be determined between MDDs and TMDs. Dentomaxillofacial Radiology (2012) 41, 316-322. doi: 10.1259/dmfr/27328352
Resumo:
We report on the ultrafast nonlinearity of antimony polyphosphate glasses measured using the Kerr shutter technique. The nonlinear refractive index, n(2), was (1.1+/-0.2)x10(-14) cm(2)/W at 800 nm, and enhancement of n(2) by approximate to80% was observed by adding 10% of lead oxide in the glass composition. The full width at half-maximum of the third-order correlation signal was 150 fs, which implies a fast response of the samples (less than or equal to100 fs). Nonlinear absorption was negligible in the range of intensities used. (C) 2003 American Institute of Physics.
Resumo:
Antimony glasses based on the composition Sb2O3-SbPO4 were prepared and characterized. The samples present high refractive index, good transmission from 380 to 2000 nm, and high thermal stability. The nonlinear refractive index, n(2), of the samples was studied using the optical Kerr shutter technique at 800 nm. The third-order correlation signals between pump and probe pulses indicate ultrafast response (<100 fs) for all compositions. Enhancement of n(2) was observed by adding lead oxide to the Sb2O3-SbPO4 composition. Large values of n(2)approximate to10(-14) cm(2)/W and negligible two-photon absorption coefficients (smaller than 0.01 cm/GW) were determined for all samples. The glass compositions studied present appropriate figure-of-merit for all-optical switching applications. (C) 2005 American Institute of Physics.
Resumo:
Ultrafast photoinduced absorption by infrared-active vibrational modes is used to detect charged solitons in oriented trans-polyacetylene. Soliton pairs are photogenerated within similar to250 fs with quantum efficiencies (phi(ch)) approaching unity. The excitation spectrum of phi(ch) shows an onset at similar to1.0 eV with a weak photon energy dependence up to 4.7 eV. The results are consistent with the ultrafast soliton formation predicted by Su and Schrieffer and with the Su-Scrieffer-Heeger threshold of 2E(g)/pi for soliton pair production. The recombination dynamics of charged solitons is very fast (initial decay<1 ps) with a modest dependence on the pump photon energy.
Resumo:
Ultrafast photoinduced absorption by IRAV modes is used to detect charged solitons in oriented polyacetylene. We find that soliton pairs are photogenerated within our time resolution of similar to250 fs with similar to100% quantum efficiency (phi(ch)). The excitation spectrum of phi(ch) shows an onset at 1.0 eV, with a weak photon energy dependence up to 4.7 eV. These results agree with the ultrafast soliton formation predicted by Su and Schrieffer and with the SSH threshold of 2E(g)/pi for soliton pair production.
Resumo:
Nonlinear (NL) optical properties of antimony oxide based glasses (AG) were characterized for excitation wavelengths from 800 to 1600 m. The NL refractive indices, n2, and the two-photon absorption (TPA) coefficient, β, have been evaluated using the Z-scan technique. Values of n2≈ 10-15 - 10-14 cm2/W of electronic origin were measured and negligible TPA coefficients (β < 0.003 cm/GW) were determined. The response time of the nonlinearity is faster than 100 fs as determined using the Kerr shutter technique. The figure-of-merit usually considered for all-optical switching, T = 2βλ/n2 , indicates that AG are very good materials for ultrafast switches at telecom wavelengths. © 2007 IEEE.
Resumo:
Using pump-probe reflectometry, we study the ultrafast excited-state dynamics in thin films of BuPTCD, an organic semiconductor, deposited on gold nanoparticles. We observe depletion of the ground state and excited state absorption after photo-excitation. © 2008 Optical Society of America.
Resumo:
In this article, the authors aim to present a critical review of recent MRI studies addressing white matter (WM) abnormalities in Alzheimer's disease (AD) and mild cognitive impairment (MCI), by searching PubMed and reviewing MRI studies evaluating subjects with AD or MCI using WM volumetric methods, diffusion tensor imaging and assessment of WM hyperintensities. Studies have found that, compared with healthy controls, AD and MCI samples display WM volumetric reductions and diffusion tensor imaging findings suggestive of reduced WM integrity. These changes affect complex networks relevant to episodic memory and other cognitive processes, including fiber connections that directly link medial temporal structures and the corpus callosum. Abnormalities in cortico-cortical and cortico-subcortical WM interconnections are associated with an increased risk of progression from MCI to dementia. It can be concluded that WM abnormalities are detectable in early stages of AD and MCI. Degeneration of WM networks causes disconnection among neural cells and the degree of such changes is related to cognitive decline. © 2013 2013 Expert Reviews Ltd.