924 resultados para UNMANNED UNDERWATER VEHICLES
Resumo:
This dissertation describes an approach for developing a real-time simulation for working mobile vehicles based on multibody modeling. The use of multibody modeling allows comprehensive description of the constrained motion of the mechanical systems involved and permits real-time solving of the equations of motion. By carefully selecting the multibody formulation method to be used, it is possible to increase the accuracy of the multibody model while at the same time solving equations of motion in real-time. In this study, a multibody procedure based on semi-recursive and augmented Lagrangian methods for real-time dynamic simulation application is studied in detail. In the semirecursive approach, a velocity transformation matrix is introduced to describe the dependent coordinates into relative (joint) coordinates, which reduces the size of the generalized coordinates. The augmented Lagrangian method is based on usage of global coordinates and, in that method, constraints are accounted using an iterative process. A multibody system can be modelled as either rigid or flexible bodies. When using flexible bodies, the system can be described using a floating frame of reference formulation. In this method, the deformation mode needed can be obtained from the finite element model. As the finite element model typically involves large number of degrees of freedom, reduced number of deformation modes can be obtained by employing model order reduction method such as Guyan reduction, Craig-Bampton method and Krylov subspace as shown in this study The constrained motion of the working mobile vehicles is actuated by the force from the hydraulic actuator. In this study, the hydraulic system is modeled using lumped fluid theory, in which the hydraulic circuit is divided into volumes. In this approach, the pressure wave propagation in the hoses and pipes is neglected. The contact modeling is divided into two stages: contact detection and contact response. Contact detection determines when and where the contact occurs, and contact response provides the force acting at the collision point. The friction between tire and ground is modelled using the LuGre friction model, which describes the frictional force between two surfaces. Typically, the equations of motion are solved in the full matrices format, where the sparsity of the matrices is not considered. Increasing the number of bodies and constraint equations leads to the system matrices becoming large and sparse in structure. To increase the computational efficiency, a technique for solution of sparse matrices is proposed in this dissertation and its implementation demonstrated. To assess the computing efficiency, augmented Lagrangian and semi-recursive methods are implemented employing a sparse matrix technique. From the numerical example, the results show that the proposed approach is applicable and produced appropriate results within the real-time period.
Resumo:
The underwater light field is an important environmental variable as it, among other things, enables aquatic primary production. Although the portion of solar radiation that is referred to as visible light penetrates water, it is restricted to a limited surface water layer because of efficient absorption and scattering processes. Based on the varying content of optical constituents in the water, the efficiency of light attenuation changes in many dimensions and over various spatial and temporal scales. This thesis discusses the underwater light dynamics of a transitional coastal archipelago in south-western Finland, in the Baltic Sea. While the area has long been known to have a highly variable underwater light field, quantified knowledge on the phenomenon has been scarce, patchy, or non-existent. This thesis focuses on the variability in the underwater light field through euphotic depths (1% irradiance remaining), which were derived from in situ measurements of vertical profiles of photosynthetically active radiation (PAR). Spot samples were conducted in the archipelago of south-western Finland, mainly during the ice-free growing seasons of 2010 and 2011. In addition to quantifying both the seasonal and geographical patterns of euphotic depth development, the need and usability of underwater light information are also discussed. Light availability was found to fluctuate in multiple dimensions and scales. The euphotic depth was shown to have combined spatio-temporal dynamics rather than separate changes in spatial and temporal dimensions. Such complexity in the underwater light field creates challenges in data collection, as well as in its utilisation. Although local information is needed, in highly variable conditions spot sampled information may only poorly represent its surroundings. Moreover, either temporally or spatially limited sampling may cause biases in understanding underwater light dynamics. Consequently, the application of light availability data, for example in ecological modelling, should be made with great caution.
Resumo:
Electrical road vehicles were common at the begin of the 20th century but internal combustion engines took a victory from electrical motors in road vehicles. The acknowledgement of the environment, and the price and the availability of the crude oil are reasons for the comeback of the electrical vehicles. Advancement in industrial technology and political atmosphere in EU as the directive 20--20--20, which consists of reducing fossil emission, increasing renewable energy and increasing the energy efficiency, have made the electrification popular again. In this thesis tests based on standard ISO 16750--2 electrical loads for electrical equipment in road vehicles are made for Visedo Oy's PowerMASTER M-frame power electronics device. This device is designed for mainly drive trains in mobile work machines and marine vessels but can be used in other application in its power range which also includes road vehicles. The functionality of the device is tested with preliminary tests which act as a framework for the tests based on standards.
Resumo:
The research work has been in the area of compounding and characterization of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation materials, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general have been established with reference to more than one functional property. Ranges of passive materials, besides the active sensing material go into the construction of underwater electro acoustic transducers. Reliability of the transducer is critically dependent on these passive materials. Rubbers are a major class of passive materials. The present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent function specific requirements. There exists a large gap of information in the rubber technology of underwater rubbers, particularly relating to underwater electro acoustic transducers. This study is towards filling up the gaps of information in this crucial area. Water intake into rubber is considered as the single most important issue for the long-term performance of rubbers, especially Neoprene. In this study, the cause and effects of a range of parameters affecting the water absorption by diffusion and permeation have been investigated.
Resumo:
The main objective of carrying out this investigation is to develop suitable transducer array systems so that underwater pipeline inspection could be carried out in a much better way, a focused beam and electronic steering can reduce inspection time as well. Better results are obtained by optimizing the array parameters. The spacing between the elements is assumed to be half the wavelength so that the interelement interaction is minimum. For NDT applications these arrays are operated at MHz range. The wavelengths become very small in these frequency ranges. Then the size of the array elements becomes very small, requiring hybrid construction techniques for their fabrication. Transducer elements have been fabricated using PVDF as the active, mild steel as the backing and conducting silver preparation as the bonding materials. The transducer is operated in the (3,3) mode. The construction of a high frequency array is comparatively complicated. The interelement spacing between the transducer elements becomes considerably small when high frequencies are considered. It becomes very difficult to construct the transducer manually. The electrode connections to the elements can produce significant loading effect. The array has to be fabricated using hybrid construction techniques. The active materials has to be deposited on a proper substrate and etching techniques are required to fabricate the array. The annular ring, annular cylindrical or other similar structural forms of arrays may also find applications in the near future in treatments were curved contours of the human body are affected.
Resumo:
The thesis presented here includes the designing of underwater transducer arrays, taking into account the ‘interaction effects’ [30] among the closely packed radiators. Methods of minimizing the ‘interaction effects‘ by modifying the radiating aperture, are investigated. The need for this study arises as it is one of the important peculiar limitations that stands in the way of achieving maximum range of transmission of acoustic signals. Application of the modified array format for the generation of narrow beam low frequency sound waves, through nonlinear interactions, is discussed. Other techniques that can be advantageously exploited in array synthesis are also investigated
Resumo:
Rubber has become an indispensable material in Ocean technology. Rubber components play critical roles such as sealing, damping, environmental protection, electrical insulation etc. in most under water engineering applications. Technology driven innovations in electro acoustic transducers and other sophisticated end uses have enabled quantum jump in the quality and reliability of rubber components. Under water electro acoustic transducers use rubbers as a critical material in their construction. Work in this field has lead to highly reliable and high performance materials which has enhanced service life of transducers to the extent of 1015 years. Present work concentrates on these materials. Conventional rubbers are inadequate to meet many of the stringent functional of the requirements. There exists large gap of information in the rubber technology of under water rubbers, particularly in the context of under water electro acoustic transducers. Present study is towards filling up the gaps of information in this crucial area. The research work has been in the area of compounding and characterisation of rubbers for use in under water electro acoustic transducers. The study also covers specific material system such as encapsulation material, baffle material, seal material, etc. Life prediction techniques of under water rubbers in general has been established with reference to more than one functional property. This thesis is divided into 6 chapters.
Resumo:
Underwater target localization and tracking attracts tremendous research interest due to various impediments to the estimation task caused by the noisy ocean environment. This thesis envisages the implementation of a prototype automated system for underwater target localization, tracking and classification using passive listening buoy systems and target identification techniques. An autonomous three buoy system has been developed and field trials have been conducted successfully. Inaccuracies in the localization results, due to changes in the environmental parameters, measurement errors and theoretical approximations are refined using the Kalman filter approach. Simulation studies have been conducted for the tracking of targets with different scenarios even under maneuvering situations. This system can as well be used for classifying the unknown targets by extracting the features of the noise emanations from the targets.
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
A new localization approach to increase the navigational capabilities and object manipulation of autonomous mobile robots, based on an encoded infrared sheet of light beacon system, which provides position errors smaller than 0.02m is presented in this paper. To achieve this minimal position error, a resolution enhancement technique has been developed by utilising an inbuilt odometric/optical flow sensor information. This system respects strong low cost constraints by using an innovative assembly for the digitally encoded infrared transmitter. For better guidance of mobile robot vehicles, an online traffic signalling capability is also incorporated. Other added features are its less computational complexity and online localization capability all these without any estimation uncertainty. The constructional details, experimental results and computational methodologies of the system are also described
Resumo:
This thesis develops an approach to the construction of multidimensional stochastic models for intelligent systems exploring an underwater environment. It describes methods for building models by a three- dimensional spatial decomposition of stochastic, multisensor feature vectors. New sensor information is incrementally incorporated into the model by stochastic backprojection. Error and ambiguity are explicitly accounted for by blurring a spatial projection of remote sensor data before incorporation. The stochastic models can be used to derive surface maps or other representations of the environment. The methods are demonstrated on data sets from multibeam bathymetric surveying, towed sidescan bathymetry, towed sidescan acoustic imagery, and high-resolution scanning sonar aboard a remotely operated vehicle.
Resumo:
Estudi de l’eficiència aerodinàmica de les carrosseries de vehicles pesants de cara a reduir el consum de combustible en autocars de llarg trajecte. L’estudi es basa en tres aspectes: validació del programa de simulació, estudi aerodinàmic de diferents carrosseries d’autocar de mercat i estudi aerodinàmic de diferents complements
Resumo:
L’objecte d’aquest estudi consisteix en determinar la influència de l’ús del biodièsel en: 1.- Les variacions en comparació amb el combustible convencional (gasoil A) en les emissions de gasos i partícules contaminants en motors de vehicles pesants de transport de mercaderies. 2.- Les variacions en comparació amb el combustible convencional (gasoil A) en el nivell de so emès per motors de vehicles pesants de transport de mercaderies. 3.- Els canvis en el consum de combustible en vehicles pesants en comparació amb la utilització de gasoil A. 4.- Els problemes tècnics observats en motors de vehicles pesants de transport de mercaderies durant un període de funcionament elevat
Resumo:
Investigacions recents revelen com l’acció del vent lateral és un efecte molt important en bona part dels accidents ocorreguts en vehicles pesants de transport per carretera. És per això que el perfil aerodinàmic del vehicle esdevé determinant en l’avaluació de les forces laterals que hi actuen. El present projecte té per objecte determinar les forces laterals que s’exerceixen en vehicles pesants de transport de passatgers degut a l’acció del vent i investigar-ne la seva perillositat. Per fer-ho s’utilitzen models numèrics de dinàmica de fluids i, per diferents velocitats del vehicle, es simulen vents amb diferent intensitat i direcció. D’aquí es determinen unes condicions de perillositat en funció, entre d’altres variables, de l’angle d’incidència del vent i de la seva velocitat