900 resultados para UBICACIÓN GPS
Resumo:
Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.
Resumo:
BACKGROUND Muscle strength greatly influences gait kinematics. The question was whether this association is similar in different diseases. METHODS Data from instrumented gait analysis of 716 patients were retrospectively assessed. The effect of muscle strength on gait deviations, namely the gait profile score (GPS) was evaluated by means of generalised least square models. This was executed for seven different patient groups. The groups were formed according to the type of disease: orthopaedic/neurologic, uni-/bilateral affection, and flaccid/spastic muscles. RESULTS Muscle strength had a negative effect on GPS values, which did not significantly differ amongst the different patient groups. However, an offset of the GPS regression line was found, which was mostly dependent on the basic disease. Surprisingly, spastic patients, who have reduced strength and additionally spasticity in clinical examination, and flaccid neurologic patients showed the same offset. Patients with additional lack of trunk control (Tetraplegia) showed the largest offset. CONCLUSION Gait kinematics grossly depend on muscle strength. This was seen in patients with very different pathologies. Nevertheless, optimal correction of biomechanics and muscle strength may still not lead to a normal gait, especially in that of neurologic patients. The basic disease itself has an additional effect on gait deviations expressed as a GPS-offset of the linear regression line.
Resumo:
Clock synchronization is critical for the operation of a distributed wireless network system. In this paper we investigate on a method able to evaluate in real time the synchronization offset between devices down to nanoseconds (as needed for positioning). The method is inspired by signal processing algorithms and relies on fine-grain time information obtained during the reconstruction of the signal at the receiver. Applying the method to a GPS-synchronized system show that GPS-based synchronization has high accuracy potential but still suffers from short-term clock drift, which limits the achievable localization error.
Resumo:
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is now in orbit for more than four years. This is longer than the originally planned lifetime of the satellite and after three years on the same altitude the satellite has been lowered to 235 km in several steps. In the frame of the GOCE High-level Processing Facility the Astronomical Institute of the University of Bern (AIUB) is responsible for the determination of the official Precise Science Orbit (PSO) product. Kinematic GOCE orbits are part of this product and are used by several institutions in- and outside the HPF for determining the low degrees of the Earth’s gravity field. AIUB GOCE GPS-only gravity field solutions using the Celestial Mechanics Approach and covering the Release 4 period as well as a more recent time interval at the lower orbit altitude are shown and discussed. Special attention is paid to the impact of systematic deficiencies in the kinematic orbits on the resulting gravity fields, e.g., related to the geomagnetic equator, and on possibilities to get rid of them.
Resumo:
A joint reprocessing of GPS, GLONASS and SLR observations has been carried out at TU Dresden, TU Munich, AIUB and ETH Zurich. Common a priori models have been applied for the processing of all types of observation to ensure both consistent parameter estimates and the rigorous combination of microwave and optical measurements. Based on that reprocessing results, we evaluate the impact of adding GLONASS observations to the standard GPS data processing. In particular, changes in station position time series and day boundary overlaps of consecutive satellite arcs are analyzed. In addition, the GNSS orbits derived from microwave measurements are validated using independent SLR range measurements. Our SLR residuals indicate a significant improvement compared to previous results. Furthermore, we evaluate the performance of our high-rate (30s) combined GNSS satellite clocks and discuss associated zero-difference phase residuals.