976 resultados para Type Synthesis
Resumo:
Studies were performed to test the hypothesis that type I hypersensitivity underlies worm induced intestinal fluid secretion and the rapid rejection of Trichinella spiralis from immunized rats, and the two events may be related in a cause-effect manner.^ Two approaches were taken. One was to determine whether inhibition of anaphylaxis-mediated Cl$\sp{-}$ and fluid secretion accompanying a secondary infection impedes worm rejection from immune hosts. The other was to determine whether induction of intestinal fluid secretion in nonimmune hosts interfered with worm establishment. In both studies, fluid secretion was measured volumetrically 30 min after a challenge infection and worms were counted.^ In immunized rats indomethacin did not affect the worm-induced fluid secretion when used alone, despite inhibiting mucosal prostaglandin synthesis. Fluid secretion was reduced by treatment with diphenhydramine and further reduced by the combination of diphenhydramine and indomethacin. The paradoxical effects of indomethacin when used alone compared with its coadministration with diphenhydramine is explained by the enhancing effect of indomethacin on histamine release. Abolishing net fluid secretion in these studies had no effect on rapid worm rejection in immune hosts.^ Worm establishment was reduced in recipients of immune serum containing IgE antibodies. Net intestinal fluid secretion induced in normal rats by PGE$\sb2$, cholera toxin, or hypertonic mannitol solution had no effect on worm establishment compared with untreated controls.^ In a related experiment, worm-induced intestinal fluid secretion and worm rejection in immune rats were partially blocked by concurrent injection with 5-HT$\sb2$ and 5-HT$\sb3$ blockers (Ketanserin and MDL-72222), suggesting that 5-HT is involved. This possible involvement was supported in that treatment of nonimmune rats with 5-HT significantly inhibited worm establishment in the intestine.^ Results indicate that anaphylaxis is the basis for both worm-induced intestinal fluid secretion and rapid rejection of T. spiralis in immune rats, but these events are independent of one another. 5-HT is a possible mediator of worm rejection, however, its mechanism of action is related to something other than fluid secretion. ^
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
The neutral bis ((pivaloyloxy)methyl) (PIV$\sb2\rbrack$ derivatives of FdUMP, ddUMP, and AZTMP were synthesized as potential membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. These compounds were designed to enter cells by passive diffusion and revert to the parent nucleotides after removal of the PIV groups by hydrolytic enzymes. These prodrugs were prepared by condensation of FUdR, ddU, and AZT with PIV$\sb2$ phosphate in the presence of triphenylphosphine and diethyl azodicarboxylate (the Mitsunobo reagent). PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP were stable in the pH range 1.0-4.0 (t$\sb{1/2} = {>}$100 h). They were also fairly stable at pH 7.4 (t$\sb{1/2} = {>}$40 h). In 0.05 M NaOH solution, however, they were rapidly degraded (t$\sb{1/2} < 2$ min). In the presence hog liver carboxylate esterase, they were converted quantitatively to the corresponding phosphodiesters, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP; after 24 h incubation, only trace amounts of FdUMP, ddUMP, and AZTMP (1-5%) were observed indicating that the PIV$\sb1$ compounds were poor substrates for the enzyme. In human plasma, the PIV$\sb2$ compounds were rapidly degraded with half-lives of less than 5 min. The rate of degradation of the PIV$\sb2$ compounds in the presence of phosphodiesterase I was the same as that in buffer controls, indicating that they were not substrates for this enzyme. In the presence of phosphodiesterase I, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP were converted quantitatively to FdUMP, ddUMP, and AZTMP.^ PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were effective at controlling HIV type 1 infection in MT-4 and CEM tk$\sp-$ cells in culture. Mechanistic studies demonstrated that PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were taken up by the cells and converted to ddUTP and AZTTP, both potent inhibitors of HIV reverse transcriptase. However, a potential shortcoming of PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP as clinical therapeutic agents is that they are rapidly degraded (t$\sb{1/2}$ = approx. 4 minutes) in human plasma by carboxylate esterases. To circumvent this limitation, chemically-labile nucleotide prodrugs and liposome-encapsulated nucleotide prodrugs were investigated. In the former approach, the protective groups bis(N, N-(dimethyl)carbamoyloxymethyl) (DM$\sb2$) and bis (N-(piperidino)carbamoyloxymethyl) (DP$\sb2$) were used to synthesize DM$\sb2$-ddUMP and DP$\sb2$-ddUMP, respectively. In aqueous buffers (pH range 1.0-9.0) these compounds were degraded with half-lives of 3 to 4 h. They had similar half-lives in human plasma demonstrating that they were resistant to esterase-mediated cleavage. However, neither compound gave rise to significant concentrations of ddUMP in CEM or CEM tk$\sp-$ cells. In the liposome-encapsulated nucleotide prodrug approach, three different liposomal formulations of PIV$\sb2$-ddUMP (L-PIV$\sb2$-ddUMP) were investigated. The half-lifes of these L-PIV$\sb2$-ddUMP preparations in human plasma were 2 h compared with 4 min for the free drug. The preparations were more effective at controlling HIV-1 infection than free PIV$\sb2$-ddUMP in human T cells in culture. Collectively, these data indicate that PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP are effective membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. ^
Resumo:
We present the synthesis of the two novel nucleosides iso-tc-T and bcen-T, belonging to the bicyclo-/tricyclo-DNA molecular platform. In both modifications the torsion around C6’–C7’ within the carbocyclic ring is planarized by either the presence of a C6’–C7’ double bond or a cyclopropane ring. Structural analysis of these two nucleosides by X-ray analysis reveals a clear preference of torsion angle γ for the gauche orientation with the furanose ring in a near perfect 2’-endo conformation. Both modifications were incorporated into oligodeoxynucleotides and their thermal melting behavior with DNA and RNA as complements was assessed. We found that the iso-tc-T modification was significantly more destabilizing in duplex formation compared to the bcen-T modification. In addition, duplexes with complementary RNA were less stable as compared to duplexes with DNA as complement. A structure/affinity analysis, including the already known bc-T and tc-T modifications, does not lead to a clear correlation of the orientation of torsion angle γ with DNA or RNA affinity. There is, however, some correlation between furanose conformation (N- or S-type) and affinity in the sense that a preference for a 3’-endo like conformation is associated with a preference for RNA as complement. As a general rule it appears that Tm data of single modifications with nucleosides of the bicyclo-/tricyclo-DNA platform within deoxyoligonucleotides are not predictive for the stability of fully modified oligonucleotides.
Resumo:
For autologous chondrocyte transplantation, articular chondrocytes are harvested from cartilage tissue and expanded in vitro in monolayer culture. We aimed to characterize with a cellular resolution the synthesis of collagen type II (COL2) and collagen type I (COL1) during expansion in order to further understand why these cells lose the potential to form cartilage tissue when re-introduced into a microenvironment that supports chondrogenesis. During expansion for six passages, levels of transcripts encoding COL2 decreased to <0.1%, whereas transcript levels encoding COL1 increased 370-fold as compared to primary chondrocytes. Flow cytometry for intracellular proteins revealed that chondrocytes acquired a COL2/COL1-double positive phenotype during expansion, and the COL2 positive cells were able to enter the cell cycle. While the fraction of COL2 positive cells decreased from 70% to <2% in primary chondrocytes to passage six cells, the fraction of COL1 positive cells increased from <1% to >95%. In parallel to the decrease of the fraction of COL2 positive cells, the cells' potential to form cartilage-like tissue in pellet cultures steadily decreased. Intracellular staining for COL2 enables for characterization of chondrocyte lineage cells in more detail with a cellular resolution, and it may allow predicting the effectiveness of expanded chondrocytes to form cartilage-like tissue.
Resumo:
The ribonuclease activity of the soluble glycoprotein E(rns) of pestiviruses represents a unique mechanism to circumvent the host's innate immune system by blocking interferon type-I synthesis in response to extracellularly added single- (ss) and double-stranded (ds) RNA. However, the reason why pestiviruses encode a ribonuclease in addition to the abundant serum RNases remained elusive. Here, we show that the 5' UTR and NS5B regions of various strains of the RNA genome of the pestivirus bovine viral diarrhea virus (BVDV) are resistant to serum RNases and are potent TLR-3 agonists. Inhibitory activity of E(rns) was restricted to cleavable RNA products, and did not extend to the synthetic TLR-7/8 agonist R-848. RNA complexed with the antimicrobial peptide LL37 was protected from degradation by E(rns)in vitro but was fully inhibited by E(rns) in its ability to induce IFN in cell cultures, suggesting that the viral protein is mainly active in cleaving RNA in an intracellular compartment. We propose that secreted E(rns) represents a potent IFN antagonist, which degrades viral RNA that is resistant to the ubiquitous host RNases in the extracellular space. Thus, the viral RNase prevents its own pathogen-associated molecular pattern (PAMP) to inadvertently activate the IFN response that might break innate immunotolerance required for persistent pestivirus infections.
Resumo:
The synthesis of the two fluorinated tricyclic nucleosides 6?-F-tc-T and 6?-F-tc-5MeC, as well as the corresponding building blocks for oligonucleotide assembly, was accomplished. An X-ray analysis of N4-benzoylated 6?-F-tc-5MeC reavealed a 2?-exo (north) conformation of the furanose ring, characterizing it as an RNA mimic. In contrast to observations in the bicyclo-DNA series, no short contact between the fluorine atom and the H6 of the base, reminiscent of a nonclassical F···H hydrogen bond, could be observed. Tm measurements of modified oligodeoxynucleotides with complementary RNA showed slightly sequence-dependent duplex stabilization profiles with maximum ?Tm/mod values of +4.5 °C for 6?-F-tc-5MeC and +1 °C for 6?-F-tc-T. In comparison with parent tc-modified oligonucleotides, no relevant changes in Tm were detected, attributing the fluorine substituent a neutral role in RNA affinity. A structural analysis of duplexes with DNA and RNA by CD-spectroscopy revealed a shift from B- to A-type conformation induced by the 6?-F-tc-nucleosides. This is not a specific ?fluorine effect?, as the same is also observed for the parent tc-modifications. The two fluorinated tc-nucleosides were also incorporated into a pure tricyclo-DNA backbone and showed no discrimination in Tm with complementary RNA, demonstrating that 6?-F substitution is also compatible within fully modified tc-oligonucleotides.
Resumo:
11β-Hydroxysteroid dehydrogenases (11beta-HSD) modulate mineralocorticoid receptor transactivation by glucocorticoids and regulate access to the glucocorticoid receptor. The isozyme 11beta-HSD2 is selectively expressed in mineralocorticoid target tissues and its activity is reduced in various disease states with abnormal sodium retention and hypertension, including the apparent mineralocorticoid excess. As 50% of patients with essential hypertension are insulin resistant and hyperinsulinemic, we hypothesized that insulin downregulates the 11beta-HSD2 activity. In the present study we show that insulin reduced the 11beta-HSD2 activity in cancer colon cell lines (HCT116, SW620 and HT-29) at the transcriptional level, in a time and dose dependent manner. The downregulation was reversible and required new protein synthesis. Pathway analysis using mRNA profiling revealed that insulin treatment modified the expression of the transcription factor family C/EBPs (CCAAT/enhancer-binding proteins) but also of glycolysis related enzymes. Western blot and real time PCR confirmed an upregulation of C/EBP beta isoforms (LAP and LIP) with a more pronounced increase in the inhibitory isoform LIP. EMSA and reporter gene assays demonstrated the role of C/EBP beta isoforms in HSD11B2 gene expression regulation. In addition, secretion of lactate, a byproduct of glycolysis, was shown to mediate insulin-dependent HSD11B2 downregulation. In summary, we demonstrate that insulin downregulates HSD11B2 through increased LIP expression and augmented lactate secretion. Such mechanisms are of interest and potential significance for sodium reabsorption in the colon.
Resumo:
Three new coordination polymers [M(Pht)(1-MeIm)2]n (where M=Cu (1), Zn (2), Co (3); Pht2−=dianion of o-phthalic acid; 1-MeIm=1-methylimidazole) and two compounds [M(1-MeIm)6](HPht)2 · 2H2O (M=Co (4), Ni (5)) have been synthesized and characterized by X-ray crystallography. The structures of 1–3 (2 is isostructural to 3) consist of [M(1-MeIm)2] building units connected by 1,6-bridging phthalate ions to form infinite chains. In complex 1, each copper(II) center adopts a square coordination mode of N2O2 type by two O atoms from different phthalate ions and two N atoms of 1-MeIm, whereas in 3 two independent metal atoms are tetrahedrally (N2O2) coordinated to a pair of Pht ligands and a pair of 1-MeIm molecules. There are only van der Waals interactions between the chains in 1, while the three-dimensional network in 3 is assembled by C–H⋯O contacts. In contrast to polymers 1–3 the structures of 4 and 5 (complexes are also isostructural) are made up of the [M(1-MeIm)6]2+ cation, two hydrogen phthalate anions (HPht−) and two H2O solvate molecules. The coordination around each metal(II) atom is octahedral with six nitrogen atoms of 1-MeIm. Extended hydrogen bonding networks embracing the solvate water molecules and a phthalate residue as well as the weak C–H⋯O interactions stabilize the three-dimensional structures. Magnetic studies clearly show that the magnetic ions do not interact with each other. Furthermore, in compound 4 we have another example of a highly anisotropic Co2+ ion with a rhombic g-tensor and large zero-field-splitting. The complexes were also characterized by IR and 1H NMR spectroscopy, thermogravimetric analysis, and all data are discussed in the terms of known structures.
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
The synthesis of the monomeric building block 13 and its constitutional isomer 12 of a new type of DNA analog, distamycin-NA, is presented (Schemes 1 and 2). This building block consists of a uracil base attached to a thiophene core unit via a biaryl-like axis. Next to the biaryl-like axis on the thiophene chromophore, a carboxy and an amino substituent are located allowing for oligomerization via peptide coupling. The proof of constitution and the conformational preferences about the biaryl-like axis were established by means of X-ray analyses of the corresponding nitro derivatives 10 and 11. Thus, the uracil bases are propeller-twisted relative to the thiophene core, and bidentate H-bonds occur between two uracil bases in the crystals. The two amino-acid building blocks 12 and 13 were coupled to give the dimers 15 and 16 using dicyclohexylcarbodiimide (DCC) in THF/LiCl and DMF, respectively. While the dimer 15 showed no atropisomerism on the NMR time scale at room temperature, its isomer 16 occurred as distinct diastereoisomers due to the hindered rotation around its biaryl-like axis. Variable-temperature 1H-NMR experiments allowed to determine a rotational barrier of 19 ± 1 kcal/mol in 16. The experimental data were complemented by AM1 calculations.
Resumo:
A large family of bifunctional 1,2,4-triazole molecular tectons (tr) has been explored for engineering molybdenum(VI) oxide hybrid solids. Specifically, tr ligands bearing auxiliary basic or acidic groups were of the type amine, pyrazole, 1H-tetrazole, and 1,2,4-triazole. The organically templated molybdenum(VI) oxide solids with the general compositions [MoO3(tr)], [Mo2O6(tr)], and [Mo2O6(tr)(H2O)2] were prepared under mild hydrothermal conditions or by refluxing in water. Their crystal structures consist of zigzag chains, ribbons, or helixes of alternating cis-{MoO4N2} or {MoO5N} polyhedra stapled by short [N–N]-tr bridges that for bitriazole ligands convert the motifs into 2D or 3D frameworks. The high thermal (235–350 °C) and chemical stability observed for the materials makes them promising for catalytic applications. The molybdenum(VI) oxide hybrids were successfully explored as versatile oxidation catalysts with tert-butyl hydroperoxide (TBHP) or aqueous H2O2 as an oxygen source, at 70 °C. Catalytic performances were influenced by the different acidic–basic properties and steric hindrances of coordinating organic ligands as well as the structural dimensionality of the hybrid.
Resumo:
The adenovirus type 5 E1A gene was originally developed as a gene therapy to inhibit tumorigenicity of HER-2-overexpressing cells by transcriptional downregulation of HER-2. Our goal is to improve the overall efficacy of E1A gene therapy. To achieve this goal, we have conducted two preclinical experiments. ^ First, we hypothesized that Bcl-2 overexpressing ovarian cancer is resistant to E1A gene therapy. This hypothesis is based on that the 19 kDa protein product of the adenoviral E1B gene which is homologous to Bcl-2 inhibits E1A-induced apoptosis. Treating high Bcl-2-xpressing cells with E1A in combination with an antisense oligonucleotide to Bcl-2 (Bcl-2-ASO) resulted in a significant decrease in cell viability due to an increased rate of apoptosis relative to cells treated with E1A alone. In an ovarian cancer xenograft model, mice implanted with low HER-2, high Bcl-2 cells, treated with E1A plus Bcl-2-ASO led to prolonged survival. Bcl-2 thus may serve as a predictive molecular marker enabling us to select patients with ovarian cancer who will benefit significantly from E1A gene therapy. ^ Second, we elucidated the molecular mechanism governing the anti-tumor effect of E1A in ovarian cancer to identify a more potent tumor suppressor gene. We identified PEA-15 (phospho-protein enriched in astrocytes) upregulated in E1A transfected low HER-2-expressing OVCAR-3 ovarian cancer cell, which showed decreased cell proliferation. PEA-15 moved ERK from the nucleus to the cytoplasm and inhibited ERK-dependent transcription and proliferation. Using small interfering RNA to knock down PEA-15 expression in OVCAR-3 cells made to constitutively express E1A resulted in accumulation of phosphoERK in the nucleus, an increase in Elk-1 activity, DNA synthesis, and anchorage-independent growth. PEA-15 also independently suppressed colony formation in some breast and ovarian cancer cell lines in which E1A is known to have anti-tumor activity. We conclude that the anti-tumor activity of E1A depends on PEA-15. ^ In summary, (1) Bcl-2 may serve as a predictive molecular marker of E1A gene therapy, allowing us to select patients and improve efficacy of E1A gene therapy. (2) PEA-15 was identified as a component of the molecular mechanism governing the anti-tumor activity of E1A in ovarian cancer, (3) PEA-15 may be developed as a novel therapeutic gene. ^
Resumo:
This synthesis of the literature provides descriptive analysis and outlines current self-management interventions for African Americans with type 2 diabetes. Specifically, this study describes and explores the design of those studies whose interventions have been shown to lower HbA1C levels in this population by at least 0.5% points, an improvement that provides approximately 10% reduction in long term complications from this disease.^ Results. In total, 37 articles were reviewed and 17 articles met inclusion criteria for analysis. Analysis of each study's methodology and results was performed and selected studies with interventions that resulted in improvements in HbA1C outcomes equal to 0.5% or greater for both group 1 and 2 were summarized by intervention type in table format. Descriptive analysis, outlining the number and characteristics of proximal and distal mediating components addressed in Group 1 studies, was performed in order to determine whether mediating components may have had some relation to effectiveness of intervention on outcome HbA1C. Descriptive analysis revealed that no particular design is substantially more effective than another among Behavioral studies although, there may be an advantage in using culturally sensitive, group interventions that address greater numbers of distal mediating components. Among Process studies, structured approaches (i.e. algorithm care and scheduled follow up), as well as utilization of specialty and group care are represented as effective for African American populations. ^ Conclusions. It may be summarized that by targeting behavior and addressing provider delivery (i.e. algorithm use, group care, home care, and provider follow up) in this population, a greater yield in outcome improvements may be accomplished. However, many gaps exist in a review process that stratifies results and focuses on identifying group specific intervention successes and failures. Further research in different populations will aid researchers and practitioners in discovering the best evidence, and identifying models that could be utilized in practice to achieve the best diabetes management for at risk groups.^
Resumo:
We designed and synthesized a novel daunorubicin (DNR) analogue that effectively circumvents P-glycoprotein (P-gp)-mediated drug resistance. The fully protected carbohydrate intermediate 1,2-dibromoacosamine was prepared from acosamine and effectively coupled to daunomycinone in high yield. Deprotection under alkaline conditions yielded 2$\sp\prime$-bromo-4$\sp\prime$-epidaunorubicin (WP401). The in vitro cytotoxicity and cellular and molecular pharmacology of WP401 were compared with those of DNR in a panel of wild-type cell lines (KB-3-1, P388S, and HL60S) and their multidrug-resistant (MDR) counterparts (KB-V1, P388/DOX, and HL60/DOX). Fluorescent spectrophotometry, flow cytometry, and confocal laser scanning microscopy were used to measure intracellular accumulation, retention, and subcellular distribution of these agents. All MDR cell lines exhibited reduced DNR uptake that was restored, upon incubation with either verapamil (VER) or cyclosporin A (CSA), to the level found in sensitive cell lines. In contrast, the uptake of WP401 was essentially the same in the absence or presence of VER or CSA in all tested cell lines. The in vitro cytotoxicity of WP401 was similar to that of DNR in the sensitive cell lines but significantly higher in resistant cell lines (resistance index (RI) of 2-6 for WP401 vs 75-85 for DNR). To ascertain whether drug-mediated cytotoxicity and retention were accompanied by DNA strand breaks, DNA single- and double-strand breaks were assessed by alkaline elution. High levels of such breaks were obtained using 0.1-2 $\mu$g/mL of WP401 in both sensitive and resistant cells. In contrast, DNR caused strand breaks only in sensitive cells and not much in resistant cells. We also compared drug-induced DNA fragmentation similar to that induced by DNR. However, in P-gp-positive cells, WP401 induced 2- to 5-fold more DNA fragmentation than DNR. This increased DNA strand breakage by WP401 was correlated with its increased uptake and cytotoxicity in these cell lines. Overall these results indicate that WP401 is more cytotoxic than DNR in MDR cells and that this phenomenon might be related to the reduced basicity of the amino group and increased lipophilicity of WP401. ^