865 resultados para Type 1 Diabetes mellitus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Body weight development is closely regulated by central nervous mechanisms. As has been demonstrated recently, the capability of the brain to actively demand energy from the body (brain-pull) is indispensable for the maintenance of systemic homeostasis. A deficit in this brain-pull may result in compensatory ingestive behavior followed by weight gain in the medium or long term. The aim of this study was to establish a biomarker of such an incompetent brain-pull. Since lactate is an alternative cerebral energy substrate to glucose, we investigated whether low fasting plasma lactate concentrations are associated with weight gain and increased feelings of hunger in patients with type 2 diabetes over a 3-year period. METHODS: In a population based cohort study 134 type 2 diabetes patients were examined at baseline and 3-year follow-up. Plasma lactate concentrations and additional hormones associated with food intake such as e.g. insulin, or leptin, as well as psychological variables like hunger feelings before and after a standardized breakfast were measured. The relation between fasting plasma lactate concentrations and postprandial hunger as well as follow-up weight was analyzed. RESULTS: Low fasting plasma lactate concentrations predicted a higher 3-year follow-up weight (B=-1.268, SE=0.625, p=0.04). Moreover, low fasting plasma lactate concentrations were associated with more pronounced feelings of postprandial hunger (B=-0.406, SE=0.137, p<0.01). CONCLUSIONS: We conclude that low plasma lactate concentrations may represent a biomarker of an incompetent brain-pull, which is associated with weight gain and increased postprandial hunger in patients with type 2 diabetes mellitus. These results are in line with the view that plasma lactate can be used by the brain as an alternative energy substrate and thereby to some extent prevent overeating and obesity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were to check whether different biomarkers of inflammatory, apoptotic, immunological or lipid pathways had altered their expression in the occluded popliteal artery (OPA) compared with the internal mammary artery (IMA) and femoral vein (FV) and to examine whether glycemic control influenced the expression of these genes. The study included 20 patients with advanced atherosclerosis and type 2 diabetes mellitus, 15 of whom had peripheral arterial occlusive disease (PAOD), from whom samples of OPA and FV were collected. PAOD patients were classified based on their HbA1c as well (HbA1c ≤ 6.5) or poorly (HbA1c > 6.5) controlled patients. Controls for arteries without atherosclerosis comprised 5 IMA from patients with ischemic cardiomyopathy (ICM). mRNA, protein expression and histological studies were analyzed in IMA, OPA and FV. After analyzing 46 genes, OPA showed higher expression levels than IMA or FV for genes involved in thrombosis (F3), apoptosis (MMP2, MMP9, TIMP1 and TIM3), lipid metabolism (LRP1 and NDUFA), immune response (TLR2) and monocytes adhesion (CD83). Remarkably, MMP-9 expression was lower in OPA from well-controlled patients. In FV from diabetic patients with HbA1c ≤6.5, gene expression levels of BCL2, CDKN1A, COX2, NDUFA and SREBP2 were higher than in FV from those with HbA1c >6.5. The atherosclerotic process in OPA from diabetic patients was associated with high expression levels of inflammatory, lipid metabolism and apoptotic biomarkers. The degree of glycemic control was associated with gene expression markers of apoptosis, lipid metabolism and antioxidants in FV. However, the effect of glycemic control on pro-atherosclerotic gene expression was very low in arteries with established atherosclerosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Obesity is a major risk factor for type 2 diabetes mellitus (T2DM). A proper anthropometric characterisation of T2DM risk is essential for disease prevention and clinical risk assessement. Methods: Longitudinal study in 37 733 participants (63% women) of the Spanish EPIC (European Prospective Investigation into Cancer and Nutrition) cohort without prevalent diabetes. Detailed questionnaire information was collected at baseline and anthropometric data gathered following standard procedures. A total of 2513 verified incident T2DM cases occurred after 12.1 years of mean follow-up. Multivariable Cox regression was used to calculate hazard ratios of T2DM by levels of anthropometric variables. Results: Overall and central obesity were independently associated with T2DM risk. BMI showed the strongest association with T2DM in men whereas waist-related indices were stronger independent predictors in women. Waist-to-height ratio revealed the largest area under the ROC curve in men and women, with optimal cut-offs at 0.60 and 0.58, respectively. The most discriminative waist circumference (WC) cut-off values were 99.4 cm in men and 90.4 cm in women. Absolute risk of T2DM was higher in men than women for any combination of age, BMI and WC categories, and remained low in normal-waist women. The population risk of T2DM attributable to obesity was 17% in men and 31% in women. Conclusions: Diabetes risk was associated with higher overall and central obesity indices even at normal BMI and WC values. The measurement of waist circumference in the clinical setting is strongly recommended for the evaluation of future T2DM risk in women.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Coronary microvascular dysfunction (CMD) is associated with cardiovascular events in type 2 diabetes mellitus (T2DM). Optimal glycaemic control does not always preclude future events. We sought to assess the effect of the current target of HBA1c level on the coronary microcirculatory function and identify predictive factors for CMD in T2DM patients. Methods We studied 100 patients with T2DM and 214 patients without T2DM. All of them with a history of chest pain, non-obstructive angiograms and a direct assessment of coronary blood flow increase in response to adenosine and acetylcholine coronary infusion, for evaluation of endothelial independent and dependent CMD. Patients with T2DM were categorized as having optimal (HbA1c < 7 %) vs. suboptimal (HbA1c ≥ 7 %) glycaemic control at the time of catheterization. Results Baseline characteristics and coronary endothelial function parameters differed significantly between T2DM patients and control group. The prevalence of endothelial independent CMD (29.8 vs. 39.6 %, p = 0.40) and dependent CMD (61.7 vs. 62.2 %, p = 1.00) were similar in patients with optimal vs. suboptimal glycaemic control. Age (OR 1.10; CI 95 % 1.04–1.18; p < 0.001) and female gender (OR 3.87; CI 95 % 1.45–11.4; p < 0.01) were significantly associated with endothelial independent CMD whereas glomerular filtrate (OR 0.97; CI 95 % 0.95–0.99; p < 0.05) was significantly associated with endothelial dependent CMD. The optimal glycaemic control was not associated with endothelial independent (OR 0.60, CI 95 % 0.23–1.46; p 0.26) or dependent CMD (OR 0.99, CI 95 % 0.43–2.24; p = 0.98). Conclusions The current target of HBA1c level does not predict a better coronary microcirculatory function in T2DM patients. The appropriate strategy for prevention of CMD in T2DM patients remains to be addressed. Keywords: Endothelial dysfunction; Diabetes mellitus; Coronary microcirculation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Binge eating disorder is one of the most frequent comorbid mental disorders associated with overweight and obesity. Binge eating disorder patients often suffer from other mental disorders and longitudinal studies indicate a continuous weight gain during the long-term course. As in other eating disorders gender is a risk factor, but the proportion of male binge eating disorder patients is surprisingly high.In young women with type 1 diabetes the prevalence of subclinical types of bulimia nervosa is increased. In addition, insulin purging as a characteristic compensatory behavior in young diabetic women poses a considerable problem. In patients with type 1 diabetes, disturbed eating and eating disorders are characterized by insufficient metabolic control and early development of late diabetic sequelae. Patients with type 2 diabetes are often overweight or obese. Binge eating disorder does not occur more frequently in patients with type 2 diabetes compared to healthy persons. However, the comorbidity of binge eating disorder and diabetes type 2 is associated with weight gain and insulin resistance. Especially in young diabetic patients a screening procedure for disturbed eating or eating disorders seems to be necessary. Comorbid patients should be offered psychotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVETo determine if there is a relationship between adherence to nutritional recommendations and sociodemographic variables in Brazilian patients with type 2 diabetes mellitus.METHODSCross-sectional observational study using a stratified random sample of 423 individuals. The Food Frequency Questionnaire (FFQ) was used, and the Fisher's exact test was applied with 95% confidence interval (p<0.05).RESULTSOf the 423 subjects, 66.7% were women, mean age of 62.4 years (SD = 11.8), 4.3 years of schooling on average (SD = 3.6) and family income of less than two minimum wages. There was association between the female gender and adherence to diet with adequate cholesterol content (OR: 2.03; CI: 1.23; 3.34), between four and more years of education and adherence to fractionation of meals (OR: 1 92 CI: 1.19; 3.10), and income of less than two minimum wages and adherence to diet with adequate cholesterol content (OR: 1.74; CI: 1.03, 2.95).CONCLUSIONAdherence to nutritional recommendations was associated with the female gender, more than four years of education and family income of less than two minimum wages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus is a complex disease resulting in altered glucose homeostasis. In both type 1 and type 2 diabetes mellitus, pancreatic β cells cannot secrete appropriate amounts of insulin to regulate blood glucose level. Moreover, in type 2 diabetes mellitus, altered insulin secretion is combined with a resistance of insulin-target tissues, mainly liver, adipose tissue, and skeletal muscle. Both environmental and genetic factors are known to contribute to the development of the disease. Growing evidence indicates that microRNAs (miRNAs), a class of small noncoding RNA molecules, are involved in the pathogenesis of diabetes. miRNAs function as translational repressors and are emerging as important regulators of key biological processes. Here, we review recent studies reporting changes in miRNA expression in tissues isolated from different diabetic animal models. We also describe the role of several miRNAs in pancreatic β cells and insulin-target tissues. Finally, we discuss the possible use of miRNAs as blood biomarkers to prevent diabetes development and as tools for gene-based therapy to treat both type 1 and type 2 diabetes mellitus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: To investigate the relationships between gestational diabetes mellitus (GDM) and the metabolic syndrome (MS), as it was suggested that insulin resistance was the hallmark of both conditions. To analyse post-partum screening in order to identify risk factors for the subsequent development of type 2 diabetes mellitus (DM). METHODS: A retrospective analysis of all singleton pregnancies diagnosed with GDM at the Lausanne University Hospital for 3 consecutive years. Pre-pregnancy obesity, hypertension and dyslipidaemia were recorded as constituents of the MS. RESULTS: For 5788 deliveries, 159 women (2.7%) with GDM were identified. Constituents of the MS were present before GDM pregnancy in 26% (n = 37/144): 84% (n = 31/37) were obese, 38% (n = 14/37) had hypertension and 22% (n = 8/37) had dyslipidaemia. Gestational hypertension was associated with obesity (OR = 3.2, P = 0.02) and dyslipidaemia (OR = 5.4, P=0.002). Seventy-four women (47%) returned for post-partum OGTT, which was abnormal in 20 women (27%): 11% (n = 8) had type 2 diabetes and 16% (n = 12) had impaired glucose tolerance. Independent predictors of abnormal glucose tolerance in the post-partum were: having > 2 abnormal values on the diagnostic OGTT during pregnancy and presenting MS constituents (OR = 5.2, CI 1.8-23.2 and OR = 5.3, CI 1.3-22.2). CONCLUSIONS: In one fourth of GDM pregnancies, metabolic abnormalities precede the appearance of glucose intolerance. These women have a high risk of developing the MS and type 2 diabetes in later years. Where GDM screening is not universal, practitioners should be aware of those metabolic risks in every pregnant woman presenting with obesity, hypertension or dyslipidaemia, in order to achieve better diagnosis and especially better post-partum follow-up and treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : The principal focus of this work was to study the molecular changes leading to the development of diabetic peripheral neuropathy (DPN). DPN is the most common complication associated with both type I and II diabetes mellitus (DM). This pathology is the leading cause of non-traumatic amputations. Even though the pathological and morphological changes underlying DPN are relatively well described, the implicated molecular mechanisms remain poorly understood. The following two approaches were developed to study the development of DPN in a rodent model of DM type I. As a first approach, we studied the implication of lipid metabolism in DPN phenotype, concentrating on Sterol Response Element Binding Protein (SREBP)-lc which is the key regulator of storage lipid metabolism. We showed that SREBP-1c was expressed in peripheral nerves and that its expression profile followed the expression of genes involved in storage lipid metabolism. In addition, the expression of SREBP-1c in the endoneurium of peripheral nerves was dependant upon nutritional status and this expression was also perturbed in type I diabetes. In line with this, we showed that insulin elevated the expression of SREBP-1c in primary cultured Schwann cells by activating the SREBP-1c promoter. Taken together, these findings reveal that SREBP-1c expression in Schwann cells responds to metabolic stimuli including insulin and that this response is affected in type I diabetes mellitus. This suggests that disturbed SREBP-1c regulated lipid metabolism may contribute to the pathophysiology of DPN. As a second approach, we performed a comprehensive analysis of the molecular changes associated with DPN in the Akital~1~+ mouse which is a model of spontaneous early-onset type I diabetes mellitus. This mouse expresses a mutated non-functional isoform of insulin, leading to hypoinsulinemia and hyperglycaemia. To determine the onset of DPN, weight, blood glucose and motor nerve conduction velocity (MNCV) were measured in Akital+/+ mice during the first three months of life. A decrease in MNCV was evident akeady one week after the onset of hyperglycemia. To explore the molecular changes associated with the development of DPN in these mice, we performed gene expression profiling using sciatic nerve endoneurium and dorsal root ganglia (DRG) isolated from early diabetic male Akita+/+ mice and sex-matched littermate controls. No major transcriptional changes were detected either in the DRG or in the sciatic nerve endoneurium. This experiment indicates that the phenotypic changes observed during the development of DPN are not correlated with major transcriptional alterations, but mainly with alterations at the protein level. Résumé Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1 c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita+/+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique. Résumé : Lors ce travail, nous nous sommes intéressés aux changements moléculaires aboutissant aux neuropathies périphériques dues au diabète (NPD). Les NPD sont la complication la plus commune du diabète de type I et de type II. Cette pathologie est une cause majeure d'amputations. Même si les changements pathologiques et morphologiques associés aux NPD sont relativement bien décrits, les mécanismes moléculaires provoquant cette pathologie sont mal connus. Deux approches ont principalement été utilisées pour étudier le développement des NPD dans des modèles murins du diabète de type I. Nous avons d'abord étudié l'impact du métabolisme des lipides sur le développement des NPD en nous concentrant sur Sterol Response Element Binding Protein (SREBP)-1c qui est un régulateur clé des lipides de stockage. Nous avons montré que SREBP-1 c est exprimé dans les nerfs périphériques et que son profil d'expression suit celui de gènes impliqués dans le métabolisme des lipides de stockage. De plus, l'expression de SREBP-1c dans l'endoneurium des nerfs périphériques est dépendante du statut nutritionnel et est dérégulée lors de diabète de type I. Nous avons également pu montrer que l'insuline augmente l'expression de SREBP-1c dans des cultures primaires de cellules de Schwann en activant le promoteur de SREBP-1c. Ses résultats démontrent que l'expression de SREBP-1c dans les cellules de Schwann est contrôlée par des stimuli métaboliques comme l'insuline et que cette réponse est affectée dans le cas d'un diabète de type I. Ces données suggèrent que la dérégulation de l'expression de SREBP-1c lors du diabète pourrait affecter le métabolisme des lipides et ainsi contribuer à la pathophysiologie des NPD. Comme seconde approche, nous avons réalisé une analyse globale des changements moléculaires associés au développement des NPD chez les souris Akita~~Z~+, un modèle de diabète de type I. Cette souris exprime une forme mutée et non fonctionnelle de l'insuline provoquant une hypoinsulinémie et une hyperglycémie. Afin de déterminer le début du développement de la NPD, le poids, le niveau de glucose sanguin et la vitesse de conduction nerveuse (VCN) ont été mesurés durant les 3 premiers mois de vie. Une diminution de la VCN a été détectée une semaine seulement après le développement de l'hyperglycémie. Pour explorer les changements moléculaires associés avec le développement des NPD, nous avons réalisé un profil d'expression de l'endoneurium du nerf sciatique et des ganglions spinaux isolés à partir de souris Akital+/+ et de souris contrôles Akita+/+. Aucune altération transcriptionnelle majeure n'a été détectée dans nos échantillons. Cette expérience suggère que les changements phénotypiques observés durant le développement des NPD ne sont pas corrélés avec des changements importants au niveau transcriptionnel, mais plutôt avec des altérations au niveau protéique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To assess whether blockade of the renin-angiotensin system (RAS), a recognized strategy to prevent the progression of diabetic nephropathy, affects renal tissue oxygenation in type 2 diabetes mellitus (T2DM) patients. METHODS: Prospective randomized 2-way cross over study; T2DM patients with (micro)albuminuria and/or hypertension underwent blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) at baseline, after one month of enalapril (20mgqd), and after one month of candesartan (16mgqd). Each BOLD-MRI was performed before and after the administration of furosemide. The mean R2* (=1/T2*) values in the medulla and cortex were calculated, a low R2* indicating high tissue oxygenation. RESULTS: Twelve patients (mean age: 60±11 years, eGFR: 62±22ml/min/1.73m(2)) completed the study. Neither chronic enalapril nor candesartan intake modified renal cortical or medullary R2* levels. Furosemide significantly decreased cortical and medullary R2* levels suggesting a transient increase in renal oxygenation. Medullary R2* levels correlated positively with urinary sodium excretion and systemic blood pressure, suggesting lower renal oxygenation at higher dietary sodium intake and blood pressure; cortical R2* levels correlated positively with glycemia and HbA1c. CONCLUSION: RAS blockade does not seem to increase renal tissue oxygenation in T2DM hypertensive patients. The response to furosemide and the association with 24h urinary sodium excretion emphasize the crucial role of renal sodium handling as one of the main determinants of renal tissue oxygenation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The object of this study was to evaluate the contribution of carotid distensibilty on baroreflex sensitivity in patients with type 2 diabetes mellitus with at least 2 additional cardiovascular risk factors. Carotid distensibility was measured bilaterally at the common carotid artery in 79 consecutive diabetic patients and 60 matched subjects without diabetes. Spontaneous baroreflex sensitivity assessment was obtained using time and frequency methods. Baroreflex sensitivity was lower in diabetic subjects as compared with nondiabetic control subjects (5.25+/-2.80 ms/mm Hg versus 7.55+/-3.79 ms/mm Hg; P<0.01, respectively). Contrary to nondiabetic subjects, diabetic subjects showed no significant correlation between carotid distensibility and baroreflex sensitivity (r2=0.08, P=0.04 and r2=0.04, P=0.13, respectively). In diabetic subjects, baroreflex sensitivity was significantly lower in subjects with peripheral neuropathy than in those with preserved vibration sensation (4.1+/-0.5 versus 6.1+/-0.4 ms/mm Hg, respectively; P=0.005). Age in nondiabetic subjects, diabetes duration, systolic blood pressure, peripheral or sensitive neuropathy, and carotid distensibility were introduced in a stepwise multivariate analysis to identify the determinants of baroreflex sensitivity. In diabetic patients, neuropathy is a more sensitive determinant of baroreflex sensitivity than the reduced carotid distensibility (stepwise analysis; F ratio=5.1, P=0.028 versus F ratio=1.9, P=0.16, respectively). In diabetic subjects with 2 additional cardiovascular risk factors, spontaneous baroreflex sensitivity is not related to carotid distensibility. Diabetic subjects represent a particular population within the spectrum of cardiovascular risk situations because of the marked neuropathy associated with their metabolic disorder. Therefore, neuropathy is a more significant determinant of baroreflex sensitivity than carotid artery elasticity in patients with type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes mellitus has become a major cause of death worldwide and diabetic ketoacidosis is the most common cause of death in children and adolescents with type 1 diabetes. Acute complications of diabetes mellitus as causes of death may be difficult to diagnose due to missing characteristic macroscopic and microscopic findings. Biochemical analyses, including vitreous glucose, blood (or alternative specimen) beta-hydroxybutyrate, and blood glycated hemoglobin determination, may complement postmortem investigations and provide useful information for determining the cause of death even in corpses with advanced decompositional changes. In this article, we performed a review of the literature pertaining to the diagnostic performance of classical and novel biochemical parameters that may be used in the forensic casework to identify disorders in glucose metabolism. We also present a review focusing on the usefulness of traditional and alternative specimens that can be sampled and subsequently analyzed to diagnose acute complications of diabetes mellitus as causes of death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: Smoking cessation has been suggested to increase the short-term risk of type 2 diabetes mellitus (T2DM). This study aimed at assessing the association between smoking cessation and incidence of T2DM and impaired fasting glucose (IFG). METHODS: Data from participants in the CoLaus study, Switzerland, aged 35-75 at baseline and followed for 5.5years were used. Participants were classified as smokers, recent (≤5years), long-term (>5years) quitters, and non-smokers at baseline. Outcomes were IFG (fasting serum glucose (FSG) 5.6-6.99mmol/l) and T2DM (FSG ≥7.0mmol/l and/or treatment) at follow up. RESULTS: 3,166 participants (63% women) had normal baseline FSG, of whom 26.7% were smokers, 6.5% recent quitters, and 23.5% long-term quitters. During follow-up 1,311 participants (41.4%) developed IFG (33.6% women, 54.7% men) and 47 (1.5%) developed T2DM (1.1% women, 2.1% men). Former smokers did not have statistically significant increased odds of IFG compared with smokers after adjustment for age, education, physical activity, hypercholesterolemia, hypertension and alcohol intake, with OR of 1.29 [95% confidence interval 0.94-1.76] for recent quitters and 1.03 [0.84-1.27] for long-term quitters. Former smokers did not have significant increased odds of T2DM compared with smokers with multivariable-adjusted OR of 1.53 [0.58-4.00] for recent quitters and 0.64 [0.27-1.48] for long-term quitters. Adjustment for body-mass index and waist circumference attenuated the association between recent quitting and IFG (OR 1.07 [0.78-1.48]) and T2DM (OR 1.28 [0.48-3.40]. CONCLUSION: In this middle-aged population, smoking cessation was not associated with an increased risk of IFG or T2DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetic retinopathy is one of the leading causes of blindness in working-age individuals. Diabetic patients with proteinuria or those on dialysis usually present severe forms of diabetic retinopathy, but the association of diabetic retinopathy with early stages of diabetic nephropathy has not been entirely established. A cross-sectional study was conducted on 1214 type 2 diabetic patients to determine whether microalbuminuria is associated with proliferative diabetic retinopathy in these patients. Patients were evaluated by direct and indirect ophthalmoscopy and grouped according to the presence or absence of proliferative diabetic retinopathy. The agreement of diabetic retinopathy classification performed by ophthalmoscopy and by stereoscopic color fundus photographs was 95.1% (kappa = 0.735; P < 0.001). Demographic information, smoking history, anthropometric and blood pressure measurements, glycemic and lipid profile, and urinary albumin were evaluated. On multiple regression analysis, diabetic nephropathy (OR = 5.18, 95% CI = 2.91-9.22, P < 0.001), insulin use (OR = 2.52, 95% CI = 1.47-4.31, P = 0.001) and diabetes duration (OR = 1.04, 95% CI = 1.01-1.07, P = 0.011) were positively associated with proliferative diabetic retinopathy, and body mass index (OR = 0.90, 95% CI = 0.86-0.96, P < 0.001) was negatively associated with it. When patients with macroalbuminuria and on dialysis were excluded, microalbuminuria (OR = 3.3, 95% CI = 1.56-6.98, P = 0.002) remained associated with proliferative diabetic retinopathy. Therefore, type 2 diabetic patients with proliferative diabetic retinopathy more often presented renal involvement, including urinary albumin excretion within the microalbuminuria range. Therefore, all patients with proliferative diabetic retinopathy should undergo an evaluation of renal function including urinary albumin measurements.