826 resultados para Tuna-dolphin
Resumo:
Chlorinated pesticides, PCBs and PBDEs were analysed in nine blubber samples of Atlantic spotted dolphins, Stenella frontalis, incidentally captured during fishing operations in southern and southeastern Brazil between 2005 and 2007. The majority of compounds analysed were detected, suggesting widespread contamination over the region. Although the samples came from a location far from main coastal industrial areas, the results revealed an influence from such sources. Therefore, levels of PCBs (774-23659 ng g(-1) lipid wt.) and PBDEs (23-1326 ng g(-1) lipid wt.) detected seem to be related to the movement of individuals throughout near-shore and offshore waters. The sample from a lactating female exhibited a lower level of contamination and a distinct pattern, indicating selective transfer favouring less lipophilic compounds.
Resumo:
Social networks are static illustrations of dynamic societies, within which social interactions are constantly changing. Fundamental sources of variation include ranging behaviour and temporal demographic changes. Spatiotemporal dynamics can favour or limit opportunities for individuals to interact, and then a network may not essentially represent social processes. We examined whether a social network can embed such nonsocial effects in its topology, whereby emerging modules depict spatially or temporally segregated individuals. To this end, we applied a combination of spatial, temporal and demographic analyses to a long-term study of the association patterns of Guiana dolphins, Sotalia guianensis. We found that association patterns are organized into a modular social network. Space use was unlikely to reflect these modules, since dolphins' ranging behaviour clearly overlapped. However, a temporal demographic turnover, caused by the exit/entrance of individuals (most likely emigration/immigration), defined three modules of associations occurring at different times. Although this factor could mask real social processes, we identified the temporal scale that allowed us to account for these demographic effects. By looking within this turnover period (32 months), we assessed fission-fusion dynamics of the poorly known social organization of Guiana dolphins. We highlight that spatiotemporal dynamics can strongly influence the structure of social networks. Our findings show that hypothetical social units can emerge due to the temporal opportunities for individuals to interact. Therefore, a thorough search for a satisfactory spatiotemporal scale that removes such nonsocial noise is critical when analysing a social system. (C) 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study presents new information on the feeding habits of the Atlantic spotted dolphins, Stenella frontalis, in the Western South Atlantic. Nine stomach contents of S. frontalis incidentally caught in fishing operations conducted by the gillnet fleet based on main harbour of Cananeia (25 degrees 00' S; 47 degrees 55'W), southeastern Brazil, were analyzed. These specimens were captured between 2005 and 2007. A total of 1 422 cephalopod beaks, 147 otoliths and three crustaceans were recovered from the stomach contents. The dolphins assessed preyed on at least eight different fish species of the families Trichiuridae, Carangidae, Sparidae, Merluccidae, Engraulidae, Sciaenidae, Congridae and Scombridae, five cephalopod species of the families Loliginidae, Sepiolidae, Tremoctopodidae and Thysanoteuthidae, and one shrimp species of the Penaeidae family. Based on the analysis of the Index of Relative Importance (IRI), the Atlantic cutlassfish, Trichiurus lepturus, was the most important fish species represented. Of the cephalopods, the squid Doryteuthis plei was by far the most representative species. Several items were reported for the first time as prey of the S. frontalis: Xiphopenaeus kroyeri, Tremoctopus violaceus, Semirossia tenera, Merluccius hubbsi, Pagrus pagrus and Paralonchurus brasiliensis. S. frontalis presented teuthophagous and ichthyofagous feeding habits, with apparent predominance of the first, and preyed mainly on pelagic and demersal items.
Resumo:
This study presents new information on the feeding habits of the Atlantic spotted dolphins, Stenella frontalis, in the Western South Atlantic. Nine stomach contents of S. frontalis incidentally caught in fishing operations conducted by the gillnet fleet based on main harbour of Cananéia (25°00'S; 47°55'W), southeastern Brazil, were analyzed. These specimens were captured between 2005 and 2007. A total of 1 422 cephalopod beaks, 147 otoliths and three crustaceans were recovered from the stomach contents. The dolphins assessed preyed on at least eight different fish species of the families Trichiuridae, Carangidae, Sparidae, Merluccidae, Engraulidae, Sciaenidae, Congridae and Scombridae, five cephalopod species of the families Loliginidae, Sepiolidae, Tremoctopodidae and Thysanoteuthidae, and one shrimp species of the Penaeidae family. Based on the analysis of the Index of Relative Importance (IRI), the Atlantic cutlassfish, Trichiurus lepturus, was the most important fish species represented. Of the cephalopods, the squid Doryteuthis plei was by far the most representative species. Several items were reported for the first time as prey of the S. frontalis: Xiphopenaeus kroyeri, Tremoctopus violaceus, Semirossia tenera, Merluccius hubbsi, Pagrus pagrus and Paralonchurus brasiliensis. S. frontalis presented teuthophagous and ichthyofagous feeding habits, with apparent predominance of the first, and preyed mainly on pelagic and demersal items.
Resumo:
We thank Ariosvaldo Pinto dos Santos and volunteers for the valuable help during the fieldwork; Projeto TAMAR and Parque Estadual de Itaúnas for reporting stranded marine mammals and providing logistical support in many stranding events; Jane Megid, Adriana Cortez, Susan D. Allendorf, Cíntia Maria Favero, and laboratory staffs from participating institutions for assistance during analysis; and the journal editor and 2 anonymous reviewers for their constructive comments. Fundação de Amparo à Pesquisa do Estado de São Paulo provided grants (processes 2010/50094-3, 2011/08357-0 and 2012/00021-5), which are greatly appreciated. Veracel Celulose provided financial support to the Rescue Program. Projeto Baleia Jubarte is sponsored by Petroleo Brasileiro (Petrobras). J.L.C.-D. is a recipient of a professorship by the Conselho Nacional de Desenvolvimento Científico e Tecnológico–CNPq (301517/2006-1).
Resumo:
[EN] The information provided by the International Commission for the Conservation of Atlantic Tunas (ICCAT) on captures of skipjack tuna (Katsuwonus pelamis) in the central-east Atlantic has a number of limitations, such as gaps in the statistics for certain fleets and the level of spatiotemporal detail at which catches are reported. As a result, the quality of these data and their effectiveness for providing management advice is limited. In order to reconstruct missing spatiotemporal data of catches, the present study uses Data INterpolating Empirical Orthogonal Functions (DINEOF), a technique for missing data reconstruction, applied here for the first time to fisheries data. DINEOF is based on an Empirical Orthogonal Functions decomposition performed with a Lanczos method. DINEOF was tested with different amounts of missing data, intentionally removing values from 3.4% to 95.2% of data loss, and then compared with the same data set with no missing data. These validation analyses show that DINEOF is a reliable methodological approach of data reconstruction for the purposes of fishery management advice, even when the amount of missing data is very high.
Resumo:
The dolphin (Tursiops truncatus) is a mammal that is adapted to life in a totally aquatic environment. Despite the popularity and even iconic status of the dolphin, our knowledge of its physiology, its unique adaptations and the effects on it of environmental stressors are limited. One approach to improve this limited understanding is the implementation of established cellular and molecular methods to provide sensitive and insightful information for dolphin biology. We initiated our studies with the analysis of wild dolphin peripheral blood leukocytes, which have the potential to be informative of the animal’s global immune status. Transcriptomic profiles from almost 200 individual samples were analyzed using a newly developed species-specific microarray to assess its value as a prognostic and diagnostic tool. Functional genomics analyses were informative of stress-induced gene expression profiles and also of geographical location specific transcriptomic signatures, determined by the interaction of genetic, disease and environmental factors. We have developed quantitative metrics to unambiguously characterize the phenotypic properties of dolphin cells in culture. These quantitative metrics can provide identifiable characteristics and baseline data which will enable identification of changes in the cells due to time in culture. We have also developed a novel protocol to isolate primary cultures from cryopreserved tissue of stranded marine mammals, establishing a tissue (and cell) biorepository, a new approach that can provide a solution to the limited availability of samples. The work presented represents the development and application of tools for the study of the biology, health and physiology of the dolphin, and establishes their relevance for future studies of the impact on the dolphin of environmental infection and stress.
Resumo:
The present issue analyses bluefin tuna (Thynnus thunnus) and swordfish (Xiphias glaudis) diet, caught by professional long-line fishing in the middle Adriatic Sea (Pomo pit). These species represent apex predators in pelagic environment that may play key roles in determining food web structure and ecosystem dynamics. The studies about their feedings habits, based upon stomach contents analysis, are important for the comprehension of biological and ecological interaction. Over the years, many studies have been performed on the diet of tuna and swordfish in the Mediterranean Sea. This research is based on a fairly wide number of analyzed stomach contents, in comparison with the previous ones. In this work, the analysis of 340 stomach contents of bluefin tuna caught by long-line in the central Adriatic sea confirms in general the opportunistic behaviour of this species. Finding support the hypothesis that Adriatic tuna and swordfish chase their food over a wide bathymetric zone and probably near the surface at night. No indication of food preference respect to size of predator or sample season are found. It seems that the two species are able to cohabit because their trophic niche are not overlapped, changing during the time and the vertical and horizontal space.
Resumo:
Canned tuna is one of the most widespread and recognizable fish commodities in the world. Over all oceans 80% of the total tuna catches are caught by purse seine fishery and in tropical waters their target species are: yellowfin (Thunnus albacares), bigeye (Thunnus obesus) and skipjack (Katsuwonus pelamis). Even if this fishing gear is claimed to be very selective, there are high levels of by-catch especially when operating under Fish Aggregating Devices (FADs). The main problem is underestimation of by-catch data. In order to solve this problem the scientific community has developed many specific programs (e.g. Observe Program) to collect data about both target species and by-catch with observers onboard. The purposes of this study are to estimate the quantity and composition of target species and by-catch by tuna purse seiner fishery operating in tropical waters and to underline a possible seasonal variability in the by-catch ratio (tunas versus by-catch). Data were collected with the French scientific program ”Observe” on board of the French tuna purse seiner “Via Avenir” during a fishing trip in the Gulf of Guinea (C-E Atlantic) from August to September 2012. Furthermore some by-catch specimens have been sampled to obtain more information about size class composition. In order to achieve those purposes we have shared our data with the French Institute of Research for the Development (IRD), which has data collected by observers onboard in the same study area. Yellowfin tuna results to be the main specie caught in all trips considered (around 71% of the total catches) especially on free swimming schools (FSC) sets. Instead skipjack tuna is the main specie caught under FADs. Different percentages of by-catch with the two fishing modes are observed: the by-catch incidence is higher on FADs sets (96.5% of total by-catch) than on FSC sets (3.5%) and the main category of by-catch is little-tuna (73%). When pooling data for both fishing sets used in purse seine fishery the overall by-catch/catch ratio is 5%, a lower level than in other fishing gears like long-lining and trawling.
Resumo:
My PhD project was focused on Atlantic bluefin tuna, Thunnus thynnus, a fishery resource overexploited in the last decades. For a better management of stocks, it was necessary to improve scientific knowledge of this species and to develop novel tools to avoid collapse of this important commercial resource. To do this, we used new high throughput sequencing technologies, as Next Generation Sequencing (NGS), and markers linked to expressed genes, as SNPs (Single Nucleotide Polymorphisms). In this work we applied a combined approach: transcriptomic resources were used to build cDNA libreries from mRNA isolated by muscle, and genomic resources allowed to create a reference backbone for this species lacking of reference genome. All cDNA reads, obtained from mRNA, were mapped against this genome and, employing several bioinformatics tools and different restricted parameters, we achieved a set of contigs to detect SNPs. Once a final panel of 384 SNPs was developed, following the selection criteria, it was genotyped in 960 individuals of Atlantic bluefin tuna, including all size/age classes, from larvae to adults, collected from the entire range of the species. The analysis of obtained data was aimed to evaluate the genetic diversity and the population structure of Thunnus thynnus. We detect a low but significant signal of genetic differentiation among spawning samples, that can suggest the presence of three genetically separate reproduction areas. The adult samples resulted instead genetically undifferentiated between them and from the spawning populations, indicating a presence of panmictic population of adult bluefin tuna in the Mediterranean Sea, without different meta populations.
Resumo:
As a large and long-lived species with high economic value, restricted spawning areas and short spawning periods, the Atlantic bluefin tuna (BFT; Thunnus thynnus) is particularly susceptible to over-exploitation. Although BFT have been targeted by fisheries in the Mediterranean Sea for thousands of years, it has only been in these last decades that the exploitation rate has reached far beyond sustainable levels. An understanding of the population structure, spatial dynamics, exploitation rates and the environmental variables that affect BFT is crucial for the conservation of the species. The aims of this PhD project were 1) to assess the accuracy of larval identification methods, 2) determine the genetic structure of modern BFT populations, 3) assess the self-recruitment rate in the Gulf of Mexico and Mediterranean spawning areas, 4) estimate the immigration rate of BFT to feeding aggregations from the various spawning areas, and 5) develop tools capable of investigating the temporal stability of population structuring in the Mediterranean Sea. Several weaknesses in modern morphology-based taxonomy including demographic decline of expert taxonomists, flawed identification keys, reluctance of the taxonomic community to embrace advances in digital communications and a general scarcity of modern user-friendly materials are reviewed. Barcoding of scombrid larvae revealed important differences in the accuracy of the taxonomic identifications carried out by different ichthyoplanktologists following morphology-based methods. Using a Genotyping-by-Sequencing a panel of 95 SNPs was developed and used to characterize the population structuring of BFT and composition of adult feeding aggregations. Using novel molecular techniques, DNA was extracted from bluefin tuna vertebrae excavated from late iron age, ancient roman settlements Byzantine-era Constantinople and a 20th century collection. A second panel of 96 SNPs was developed to genotype historical and modern samples in order to elucidate changes in population structuring and allele frequencies of loci associated with selective traits.
Resumo:
Faxaflói bay is a short, wide and shallow bay situated in the southwest of Iceland. Although hosting a rather high level of marine traffic, this area is inhabited by many different species of cetaceans, among which the white-beaked dolphin (Lagenorhynchus albirostris), found here all year-round. This study aimed to evaluate the potential effect of increasing marine traffic on white-beaked dolphins distribution and behaviour, and to determine whether or not a variation in sighting frequencies have occurred throughout years (2008 – 2014). Data on sightings and on behaviour, as well as photographic one, has been collected daily taking advantage of the whale-watching company “Elding” operating in the bay. Results have confirmed the importance of this area for white-beaked dolphins, which have shown a certain level of site fidelity. Despite the high level of marine traffic, this dolphin appears to tolerate the presence of boats: no differences in encounter durations and locations over the study years have occurred, even though with increasing number of vessels, an increase in avoidance strategies has been displayed. Furthermore, seasonal differences in probabilities of sightings, with respect to the time of the day, have been found, leading to suggest the existence of a daily cycle of their movements and activities within the bay. This study has also described a major decline in sighting rates throughout years raising concern about white-beaked dolphin conservation status in Icelandic waters. It is therefore highly recommended a new dedicated survey to be conducted in order to document the current population estimate, to better investigate on the energetic costs that chronic exposure to disturbances may cause, and to plan a more suitable conservation strategy for white-beaked dolphin around Iceland.
Resumo:
Yellowfin tuna (Thunnus albacares, YFT, Bonnaterre 1788) is one of the most important market tuna species in the world. The high mortality of juveniles is in part caused by their bycatch. Indeed, if unregulated, it could permanently destabilize stocks health. For this reason investigating and better knowing the stock boundaries represent a crucial concern. Aim of this thesis was to preliminary investigate the YFT population structure within and between Atlantic and Pacific Oceans through the analysis of genetic variation at eight microsatellite loci and assess the occurrence of barriers to the gene flow between Oceans. For this propouse we collected 4 geographical samples coming from Atlantic and Pacific Ocean and selected a panel of 8 microsatellites loci developped by Antoni et al., (2014). Samples 71-2-Y and 77-2-Y, came from rispectively west central pacific ocean (WCPO) and east central pacific ocean (ECPO), instead samples 41-1-Y and 34-2-Y derive from west central atlantic ocean (WCAO) and east central atlantic ocean (ECAO). Total 160 specimens were analyzed (40 per sample) and were carried out several genetic information as allele frequencies, allele number, allelic richness, HWE (using He and Ho) and pairwise Fst genetic distance. Results obtained, may support the panmictic theory of this species, only one of pairwise Fst obtained is statistically significant (Fst= 0.00927; pV= 0.00218) between 41-1-Y and 71-2-Y samples. Results suggest low genetic differentiation and consequent high level of gene flow between Atlantic and Pacific populations. Furthermore, we performed an analysis of molecular taxonomy through the use of ATCO (the flaking region between ATPse6 and cytochrome oxidase subunit III genes mt DNA, to discriminate within the gener Thunnus two of the related species (Yellofin and bigeye tuna) according with their difficult recognition at certain size (<40 cm). ATCO analysis in this thesis, has provided strong discriminate evidence between the target species proving to be one of the most reliable genetic tools capable to indagate within the genus Thunnus. Thus, our study has provided useful information for possible use of this protocol for conservation plans and management of this fish stocks.