986 resultados para Tumor antigen presentation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

La relocalisation et la dégradation médiée par ubiquitination sont utilisées par la cellule pour contrôler la localisation et l’expression de ses protéines. L’E3 ubiquitine ligase MARCH1 est impliqué dans la régulation post-traductionnelle de CMH-II et de CD86. Dans ce mémoire, on propose un rôle additionnel à MARCH1. Nos résultats expérimentaux nous portent à croire que MARCH1 pourrait moduler le métabolisme cellulaire en favorisant la relocalisation et la dégradation d’enzymes impliquées dans la glycolyse. La grande majorité des cellules utilise la phosphorylation oxydative pour générer de l’ATP en présence d’oxygène. Dans un environnement hypoxique, cette dernière est non fonctionnelle et la cellule doit utiliser la glycolyse anaérobique pour produire son ATP. Une cellule cancéreuse à des besoins énergétiques supérieurs en raison de l’augmentation de sa biomasse et de sa prolifération incontrôlée. Pour subvenir à ces besoins, elle maximise sa production d’énergie en modifiant son métabolisme; c’est l’effet Warburg. On retrouve dans les cellules immunitaires des modifications similaires au métabolisme cellulaire suite à un signal d’activation. Ici, nous montrons que la respiration mitochondriale maximale, la réserve respiratoire et la glycolyse maximale sont diminuées dans les cellules présentatrice d’antigènes qui expriment MARCH1. Nous avons montré que MARCH1 était localisable au niveau de la mitochondrie, ce qui lui permet d’interagir avec les enzymes de la glycolyse. Finalement, nous avons quantifié l’expression de Eno1 et de LDHB par Western Blot, pour montrer une augmentation de l’expression de ces enzymes en absence de MARCH1. À la lumière de ces résultats, nous discutons des avantages que procure la diminution de l’expression de MARCH1 dans un contexte inflammatoire, suite à l’activation des cellules présentatrices d’antigènes. Ce phénomène permettrait une présentation antigénique plus efficace, une augmentation de la production d’énergie et une meilleure résistance aux ROS produits lors de la réponse inflammatoire.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10-8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10-7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ~146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10-7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10-4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Las bases moleculares para el reconocimiento y la respuesta inmune están en la presentación de péptidos antigénicos. Se utilizaron la teoría de conjuntos y los datos experimentales para realizar una caracterización matemática de la región central de unión del péptido mediante la definición de 8 reglas asociadas a la unión al HLA clase II. Estas reglas se aplicaron a 4 péptidos promiscuos, 25 secuencias peptídicas naturales de la región central, de las cuales 13 presentaron unión, mientras que los demás no, y 19 péptidos sintéticos buscando diferenciar los péptidos. A excepción de uno, todos los péptidos de unión y no unión fueron caracterizados acertadamente. Esta metodología puede ser útil para escoger péptidos clave en el desarrollo de vacunas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fatty acids are known to play diverse roles in immune cells. They are important as a source of energy, as structural components of cell membranes, as signaling molecules and as precursors for the synthesis of eicosanoids and similar mediators. Recent research has suggested that the localization and organisation of fatty acids into distinct cellular pools has a direct influence on the behaviour of a number of proteins involved in immune cell activation, including those associated with T cell responses, antigen presentation and fatty acid-derived inflammatory mediator production. This article reviews these studies and places them in the context of existing literature in the field. These studies indicate the existence of several novel mechanisms by which altered fatty acid availability can modulate immune responses and impact upon clinical outcomes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In addition to the expression of recombinant proteins, baculoviruses have been developed as a platform for the display of complex eukaryotic proteins on the surface of virus particles or infected insect cells. Surface display has been used extensively for antigen presentation and targeted gene delivery but is also a candidate for the display of protein libraries for molecular screening. However, although baculovirus gene libraries can be efficiently expressed and displayed on the surface of insect cells, target gene selection is inefficient probably due to super-infection which gives rise to cells expressing more than one protein. In this report baculovirus superinfection of Sf9 cells has been investigated by the use of two recombinant multiple nucleopolyhedrovirus carrying green or red fluorescent proteins under the control of both early and late promoters (vAcBacGFP and vAcBacDsRed). The reporter gene expression was detected 8 hours after the infection of vAcBacGFP and cells in early and late phases of infection could be distinguished by the fluorescence intensity of the expressed protein. Simultaneous infection with vAcBacGFP and vAcBacDsRed viruses each at 0.5 MOI resulted in 80% of infected cells coexpressing the two fluorescent proteins at 48 hours post infection (hpi), and subsequent infection with the two viruses resulted in similar co-infection rate. Most Sf9 cells were re-infectable within the first several hours post infection, but the reinfection rate then decreased to a very low level by 16 hpi. Our data demonstrate that Sf9 cells were easily super-infectable during baculovirus infection, and super-infection could occur simultaneously at the time of the primary infection or subsequently during secondary infection by progeny viruses. The efficiency of super-infection may explain the difficulties of baculovirus display library screening but would benefit the production of complex proteins requiring co-expression of multiple polypeptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background Oocytes mature in ovarian follicles surrounded by granulosa cells. During follicle growth, granulosa cells replicate and secrete hormones, particularly steroids close to ovulation. However, most follicles cease growing and undergo atresia or regression instead of ovulating. To investigate the effects of stimulatory (follicle-stimulating hormone; FSH) and inhibitory (tumour necrosis factor alpha; TNFα) factors on the granulosa cell transcriptome, bovine ovaries were obtained from a local abattoir and pools of granulosa cells were cultured in vitro for six days under defined serum-free conditions with treatments present on days 3–6. Initially dose–response experiments (n = 4) were performed to determine the optimal concentrations of FSH (0.33 ng/ml) and TNFα (10 ng/ml) to be used for the microarray experiments. For array experiments cells were cultured under control conditions, with FSH, with TNFα, or with FSH plus TNFα (n = 4 per group) and RNA was harvested for microarray analyses. Results Statistical analysis showed primary clustering of the arrays into two groups, control/FSH and TNFα/TNFα plus FSH. The effect of TNFα on gene expression dominated that of FSH, with substantially more genes differentially regulated, and the pathways and genes regulated by TNFα being similar to those of FSH plus TNFα treatment. TNFα treatment reduced the endocrine activity of granulosa cells with reductions in expression of FST, INHA, INBA and AMH. The top-ranked canonical pathways and GO biological terms for the TNFα treatments included antigen presentation, inflammatory response and other pathways indicative of innate immune function and fibrosis. The two most significant networks also reflect this, containing molecules which are present in the canonical pathways of hepatic fibrosis/hepatic stellate cell activation and transforming growth factor β signalling, and these were up regulated. Upstream regulator analyses also predicted TNF, interferons γ and β1 and interleukin 1β. Conclusions In vitro, the transcriptome of granulosa cells responded minimally to FSH compared with the response to TNFα. The response to TNFα indicated an active process akin to tissue remodelling as would occur upon atresia. Additionally there was reduction in endocrine function and induction of an inflammatory response to TNFα that displays features similar to immune cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is a thiol-rich metallopeptidase ubiquitously distributed in mammalian tissues and involved in oligopeptide metabolism both within and outside cells. Fifteen Cys residues are present in the rat EP24.15 protein, seven are solvent accessible, and two are found inside the catalytic site cleft; no intraprotein disulfide is described. In the present investigation, we show that mammalian immunoprecipitated EP24.15 is S-glutathionylated. In vitro EP24.15 S-glutathionylation was demonstrated by the incubation of bacterial recombinant EP24.15 with oxidized glutathione concentration as low as 10 mu M. The in vitro S-glutathionylation of EP24.15 was responsible for its oxidative oligomerization to dimer and trimer complexes. EP24.15 immunoprecipitated from cells submitted to oxidative challenge showed increased trimeric forms and decreased S-glutathionylation compared to immunoprecipitated protein from control cells. Our present data also show that EP24.15 maximal enzymatic activity is maintained by partial S-glutathionylation, a mechanism that apparently regulates the protein oligomerization. Present results raise the possibility of an unconventional property of protein S-glutathionylation, inducing oligomerization by interprotein thiol-disulfide exchange. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tumor necrosis factor-related apoptosis-inducing ligand-TNFSF10 (TRAIL), a member of the TNF-alpha family and a death receptor ligand, was shown to selectively kill tumor cells. Not surprisingly, TRAIL is downregulated in a variety of tumor cells, including BCR-ABL-positive leukemia. Although we know much about the molecular basis of TRAIL-mediated cell killing, the mechanism responsible for TRAIL inhibition in tumors remains elusive because (a) TRAIL can be regulated by retinoic acid (RA); (b) the tumor antigen preferentially expressed antigen of melanoma (PRAME) was shown to inhibit transcription of RA receptor target genes through the polycomb protein, enhancer of zeste homolog 2 (EZH2); and (c) we have found that TRAIL is inversely correlated with BCR-ABL in chronic myeloid leukemia (CML) patients. Thus, we decided to investigate the association of PRAME, EZH2 and TRAIL in BCR-ABL-positive leukemia. Here, we demonstrate that PRAME, but not EZH2, is upregulated in BCR-ABL cells and is associated with the progression of disease in CML patients. There is a positive correlation between PRAME and BCR-ABL and an inverse correlation between PRAME and TRAIL in these patients. Importantly, knocking down PRAME or EZH2 by RNA interference in a BCR-ABL-positive cell line restores TRAIL expression. Moreover, there is an enrichment of EZH2 binding on the promoter region of TRAIL in a CML cell line. This binding is lost after PRAME knockdown. Finally, knocking down PRAME or EZH2, and consequently induction of TRAIL expression, enhances Imatinib sensibility. Taken together, our data reveal a novel regulatory mechanism responsible for lowering TRAIL expression and provide the basis of alternative targets for combined therapeutic strategies for CML. Oncogene (2011) 30, 223-233; doi:10.1038/onc.2010.409; published online 13 September 2010

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sialostatin L (SialoL) is a secreted cysteine protease inhibitor identified in the salivary glands of the Lyme disease vector Ixodes scapularis. In this study, we reveal the mechanisms of SialoL immunomodulatory actions on the vertebrate host. LPS-induced maturation of dendritic cells from C57BL/6 mice was significantly reduced in the presence of SialoL. Although OVA degradation was not affected by the presence of SialoL in dendritic cell cultures, cathepsin S activity was partially inhibited, leading to an accumulation of a 10-kDa invariant chain intermediate in these cells. As a consequence, in vitro Ag-specific CD4(+) T cell proliferation was inhibited in a time-dependent manner by SialoL, and further studies engaging cathepsin S(-/-) or cathepsin L(-/-) dendritic cells confirmed that the immunomodulatory actions of SialoL are mediated by inhibition of cathepsin S. Moreover, mice treated with SialoL displayed decreased early T cell expansion and recall response upon antigenic stimulation. Finally, SialoL administration during the immunization phase of experimental autoimmune encephalomyelitis in mice significantly prevented disease symptoms, which was associated with impaired IFN-gamma and IL-17 production and specific T cell proliferation. These results illuminate the dual mechanism by which a human disease vector protein modulates vertebrate host immunity and reveals its potential in prevention of an autoimmune disease. The Journal of Immunology, 2009, 182: 7422-7429.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alveolar macrophages ( AM) are the first host cells to interact with Paracoccidioides brasiliensis (Pb), a primary human pathogen that causes severe pulmonary infections in Latin America. To better understand innate immunity in pulmonary paracoccidioidomycosis, we decided to study the fungicidal and secretory abilities of AM from resistant (A/J) and susceptible (B10.A) mice to infection. Untreated, IFN-gamma and IL-12 primed AM from B10. A and A/J mice were challenged with P. brasiliensis yeasts and cocultured for 72 h. B10. A macrophages presented an efficient fungicidal ability, were easily activated by both cytokines, produced high levels of nitric oxide ( NO), IL-12, and MCP-1 associated with low amounts of IL-10 and GM-CSF. In contrast, A/J AM showed impaired cytokine activation and fungal killing, secreted high levels of IL- 10 and GM-CSF but low concentrations of NO, IL- 12, and MCP-1. The fungicidal ability of B10. A but not of A/J macrophages was diminished by aminoguanidine treatment, although only the neutralization of TGF-beta restored the fungicidal activity of A/J cells. This pattern of macrophage activation resulted in high expression of MHC class II antigens by A/J cells, while B10. A macrophages expressed elevated levels of CD40. Unexpectedly, our results demonstrated that susceptibility to a fungal pathogen can be associated with an efficient innate immunity, while a deficient innate response can ultimately favor the development of a resistant pattern to infection. Moreover, our data suggest that different pathogen recognition receptors are used by resistant and susceptible hosts to interact with P. brasiliensis yeasts, resulting in divergent antigen presentation, acquired immunity, and disease outcomes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recombinant adenovirus or DNA vaccines encoding herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) genetically fused to human papillomavirus type 16 (HPV-16) oncoproteins (E5, E6, and E7) induce antigen-specific CD8(+) T-cell responses and confer preventive resistance to transplantable murine tumor cells (TC-1 cells). In the present report, we characterized some previously uncovered aspects concerning the induction of CD8(+) T-cell responses and the therapeutic anticancer effects achieved in C57BL/6 mice immunized with pgD-E7E6E5 previously challenged with TC-1 cells. Concerning the characterization of the immune responses elicited in mice vaccinated with pgD-E7E6E5, we determined the effect of the CD4(+) T-cell requirement, longevity, and dose-dependent activation on the E7-specific CD8(+) T-cell responses. In addition, we determined the priming/boosting properties of pgD-E7E6E5 when used in combination with a recombinant serotype 68 adenovirus (AdC68) vector encoding the same chimeric antigen. Mice challenged with TC-1 cells and then immunized with three doses of pgD-E7E6E5 elicited CD8(+) T-cell responses, measured by intracellular gamma interferon (IFN-gamma) and CD107a accumulation, to the three HPV-16 oncoproteins and displayed in vivo antigen-specific cytolytic activity, as demonstrated with carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled target cells pulsed with oligopeptides corresponding to the H-2D(b)-restricted immunodominant epitopes of the E7, E6, or E5 oncoprotein. Up to 70% of the mice challenged with 5 x 10(5) TC-1 cells and immunized with pgD-E7E6E5 controlled tumor development even after 3 days of tumor cell challenge. In addition, coadministration of pgD-E7E6E5 with DNA vectors encoding pGM-CSF or interleukin-12 (IL-12) enhanced the therapeutic antitumor effects for all mice challenged with TC-1 cells. In conclusion, the present results expand our previous knowledge on the immune modulation properties of the pgD-E7E6E5 vector and demonstrate, for the first time, the strong antitumor effects of the DNA vaccine, raising promising perspectives regarding the development of immunotherapeutic reagents for the control of HPV-16-associated tumors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All-trans-retinoic acid (atRA) appears to affect Th1-Th2 differentiation and its effects on immune responses might also be mediated by dendritic cell (DC). Nonetheless, studies have been showing contradictory results since was observed either induction or inhibition of DC differentiation. Our aim was to investigate atRA action on human monocyte derived DC differentiation. For this purpose we tested pharmacological and physiological doses of atRA with or without cytokines. Cell phenotypes were analyzed by flow cytometry and function was investigated by phagocytosis and respiratory burst. DC, positive control group, was differentiated with GM-CSF and IL-4 and maturated with TNF-alpha. We demonstrated that atRA effects depend on the dose used as pharmacological doses inhibited expression of all phenotypic markers tested while a physiological dose caused cell differentiation. However, atRA combined or not with cytokines did not promote DC differentiation. In fact, atRA was detrimental on IL-4 property as a DC inductor. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Protein degradation by the ubiquitin proteasome system releases large amounts of oligopeptides within cells. To investigate possible functions for these intracellularly generated oligopeptides, we fused them to a cationic transactivator peptide sequence using reversible disulfide bonds, introduced them into cells, and analyzed their effect on G protein-coupled receptor (GPCR) signal transduction. A mixture containing four of these peptides (20-80 mu M) significantly inhibited the increase in the extracellular acidification response triggered by angiotensin II (ang II) in CHO-S cells transfected with the ang II type 1 receptor (AT1R-CHO-S). Subsequently, either alone or in a mixture, these peptides increased luciferase gene transcription in AT1R-CHO-S cells stimulated with ang II and in HEK293 cells treated with isoproterenol. These peptides without transactivator failed to affect GPCR cellular responses. All four functional peptides were shown in vitro to competitively inhibit the degradation of a synthetic substrate by thimet oligopeptidase. Overexpression of thimet oligopeptidase in both CHO-S and HEK293 cells was sufficient to reduce luciferase activation triggered by a specific GPCR agonist. Moreover, using individual peptides as baits in affinity columns, several proteins involved in GPCR signaling were identified, including alpha-adaptin A and dynamin 1. These results suggest that before their complete degradation, intracellular peptides similar to those generated by proteasomes can actively affect cell signaling, probably representing additional bioactive molecules within cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Crotalus durissus terrificus venom and its main component, crotoxin (CTX), have the ability to down-modulate the immune system. Certain mechanisms mediated by cells and soluble factors of the immune system are responsible for the elimination of pathogenic molecules to ensure the specific protection against subsequent antigen contact. Accordingly, we evaluated the immunomodulatory effects of CTX on the immune response of mice that had been previously primed by immunisation with human serum albumin (HSA). CTX inoculation after HSA immunisation, along with complete Freund`s adjuvant (CFA) or Aluminium hydroxide (Alum) immunisation, was able to suppress anti-HSA IgG1 and IgG2a antibody production. We showed that the inhibitory effects of this toxin are not mediated by necrosis or apoptosis of any lymphoid cell population. Lower proliferation of T lymphocytes from mice immunised with HSA/CFA or HSA/Alum that received the toxin was observed in comparison to the mice that were only immunised. In conclusion, CTX is able to exert potent inhibitory effects on humoural and cellular responses induced by HSA immunisation, even when injected after an innate immune response has been initiated. (C) 2011 Elsevier Ltd. All rights reserved.