927 resultados para Trimeresurus stejnegeri plasminogen activator
Resumo:
Extracellular matrix remodeling occurs during ovarian follicular development, mediated by plasminogen activators (PAs) and PA inhibitors including protease nexin-1 (PN-1). In the present study we measured expression/activity of the PA system in bovine follicles at different stages of development by timed collection of ovaries during the first follicular wave and during the periovulatory period, and in follicles collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA (tPA), urokinase (uPA) and PA inhibitor-1 (PAI-1) were initially upregulated by human chorionic gonadotropin (hCG) in bovine preovulatory follicular wall homogenates. PN-1, PAI-1 and tPA mRNA expression then decreased near the expected time of ovulation, whereas uPA mRNA levels remained high. PN-1 concentration in follicular fluid (FF) decreased and reached the lowest level at the time of ovulation, whereas plasmin activity in FF increased significantly after hCG. Follicles collected from the abattoir were classified as non-atretic, early-atretic or atretic based on FF estradiol and progesterone content: PN-1 protein levels in FF were significantly higher in non-atretic than in atretic follicles, and plasmin activity was correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were observed during the growth of pre-deviation follicles early in a follicular wave. These results indicate that PN-1 may be involved in the process of atresia in non-ovulatory dominant follicles and the prevention of precocious proteolysis in periovulatory follicles.
Resumo:
Convulxin (CVX), a C-type lectin, isolated from the venom of the South American rattlesnake Crotalus durissus terrificus, causes cardiovascular and respiratory disturbances and is a potent platelet activator which hinds to platelet glycoprotein GPVI. The structure of CVX has been solved at 2.4 Angstrom resolution to a crystallographic residual of 18.6% (R-free =26.4%). CVX is a disulfide linked heterodimer consisting of homologous alpha and beta chains. The heterodimers are additionally linked by disulfide bridges to form cyclic alpha(4)beta(4)heterotetramers. These domains exhibit significant homology to the carbohydrate-binding domains of C-type lectins, to the factor IX-binding protein (IX-bp), and to flavocetin-A (Fl-A) but sequence and Structural differences are observed in both the domains in the putative Ca2+ and carbohydrate binding regions. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Protein C activation initiated by the thrombin-thrombomodulin complex forms the major physiological anticoagulant pathway. Agkistrodon contortrix contortrix protein C activator, a glycosylated single-chain serine proteinase, activates protein C without relying on thrombomodulin. The crystal structures of native and inhibited Agkistrodon contortrix contortrix protein C activator determined at 1.65 and 1.54 angstrom resolutions, respectively, indicate the pivotal roles played by the positively charged belt and the strategic positioning of the three carbohydrate moieties surrounding the catalytic site in protein C recognition, binding, and activation. Structural changes in the benzamidine-inhibited enzyme suggest a probable function in allosteric regulation for the anion-binding site located in the C-terminal extension, which is fully conserved in snake venom serine proteinases, that preferentially binds Cl1- instead of SO42-.
Resumo:
The protein C pathway plays an important role in the control and regulation of the blood coagulation cascade and prevents the propagation of the clotting process on the endothelium surface. In physiological systems, protein C activation is catalyzed by thrombin, which requires thrombomodulin as a cofactor. The protein C activator from Agkistrodon contortrix contortrix acts directly on the zymogen of protein C converting it into the active form, independently of thrombomodulin. Suitable crystals of the protein C activator from Agkistrodon contortrix contortrix were obtained from a solution containing 2 M ammonium sulfate as the precipitant and these crystals diffracted to 1.95 angstrom resolution at a synchrotron beamline. The crystalline array belongs to the monoclinic space group C2 with unit cell dimensions a=80.4, b = 63.3 and c = 48.2 angstrom, alpha = gamma = 90.0 degrees and beta = 90.8 degrees. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sol-gel derived hybrids that contain OCH2CH2 (polyethylene glycol, PEG) repeat units grafted onto a siliceous backbone by urea, -NHC(=O)NH-, or urethane, -NHC(=O)O-, bridges have been prepared. It is demonstrated that the white light PL of these materials results from an unusual convolution of a longer lived emission that originates in the NH groups of the urea/urethane bridges with shorter lived electron-hole recombinations occurring in the nanometer-sized siliceous domains. The PL efficiencies reported here (maximum quantum yields at room temperature of ≈ 0.20 ± 0.02 at a 400 nm excitation wavelength) are in the same range as those for tetramethoxysilane-formic acid, and APTES-acetic acid, sol-gel derived phosphors. The high quantum yields combined with the possibility of tuning the emission to colors across the chromaticity diagram present a wide range of potential applications for these hybrid materials.
Resumo:
Although rare, major bleeding is the most important side effect of thrombolytic therapy in acute myocardial infarction (AMI) (Levine et al., 1995). Spontaneous hepatic bleeding in normal liver after thrombolytic administration has rarely been reported in literature. To our knowledge, there are only three cases of hepatic bleeding related to thrombolytic therapy in AMI. In these, the used drugs were anisolylated plasminogen streptokinase activator complex (APSAC) (Garcia-Jiménez et al., 1997; Fox et al., 1991) and rt-PA (Garcia-Jiménez et al., 1997). We report a case of hepatic bleeding after streptokinase followed by units over 60 minutes). The next day, the patient developed third-degree atrioventricular block and a temporary pacemaker was inserted. Twenty-seven hours after streptokinase infusion, the patient complained of refractory chest pain that was interpreted as post-myocardial infarction angina; clotting screen was normal and intravenous heparin was started (80 U/kg followed by 18 U/kg/hour). After four hours of heparin administration, the patient presented abdominal pain and distension, and his blood pressure and hematocrit level dropped. Abdominal ultrasonography revealed free fluid in the peritoneal cavity (about 3,000 mL). A laparotomy disclosed blood in the abdominal cavity with bleeding from the right lateral hepatic segment, which was removed. The remaining abdominal viscera were normal and there was no other evidence of hemorrhage. The partial liver resection presented subcapsular hemorrhage with small parenchymal hemorrhage. Histopathological examination also revealed focal areas of ischemic centrilobular necrosis. The patient died of multiple organ system failure 21 days after admission. Copyright © 2002 By PJD Publications Limited.
Resumo:
It is known that the invasin molecule of Yersinia pseudotuberculosis stimulates human peripheral B cells in vitro. In this work we evaluated the in vivo role of invasin as polyclonal activator of B lymphocytes in the mouse experimental model, by comparing strains of Y. pseudotuberculosis expressing invasin and isogenic inv mutants. Swiss mice were infected intravenously with two strains expressing invasin (YpIII pIB1 and an isogenic virulence plasmid-cured strain, YpIII) and with two invasin mutant strains (Yp100 pIB1 and Yp100, plasmid-cured). Spleen cells were sampled on days 7, 14, 21 and 28 after infection. Immunoglobulin (Ig)-secreting spleen cells were detected by protein A plaque assay and specific antibodies were detected in sera by ELISA. The virulent strain YPIII pIB1 (wild type) did not provoke polyclonal activation of B lymphocytes in vivo. In general, fewer Ig-secreting spleen cells of all isotypes were found in the infected animals than in the control animals. Specific IgG antibodies were detected in the sera of animals infected with all strains. The peak response occurred on the 21 st day post-infection, and the Yp100 strain provoked the highest level of these antibodies. We concluded that invasin is not a polyclonal activator of murine B cells.
Resumo:
Periodontitis has been associated with rheumatoid arthritis. In experimental arthritis, concomitant periodontitis caused by oral infection with Porphyromonas gingivalis enhances articular bone loss. The aim of this study was to investigate how lipopolysaccharide (LPS) from P. gingivalis stimulates bone resorption. The effects by LPS P. gingivalis and four other TLR2 ligands on bone resorption, osteoclast formation, and gene expression in wild type and Tlr2-deficient mice were assessed in ex vivo cultures of mouse parietal bones and in an in vivo model in which TLR2 agonists were injected subcutaneously over the skull bones. LPS P. gingivalis stimulated mineral release and matrix degradation in the parietal bone organ cultures by increasing differentiation and formation of mature osteoclasts, a response dependent on increased RANKL (receptor activator of NF-κB ligand). LPS P. gingivalis stimulated RANKL in parietal osteoblasts dependent on the presence of TLR2 and through a MyD88 and NF-κB-mediated mechanism. Similarly, the TLR2 agonists HKLM, FSL1, Pam2, and Pam3 stimulated RANKL in osteoblasts and parietal bone resorption. LPS P. gingivalis and Pam2 robustly enhanced osteoclast formation in periosteal/endosteal cell cultures by increasing RANKL. LPS P. gingivalis and Pam2 also up-regulated RANKL and osteoclastic genes in vivo, resulting in an increased number of periosteal osteoclasts and immense bone loss in wild type mice but not in Tlr2-deficient mice. These data demonstrate that LPS P. gingivalis stimulates periosteal osteoclast formation and bone resorption by stimulating RANKL in osteoblasts via TLR2. This effect might be important for periodontal bone loss and for the enhanced bone loss seen in rheumatoid arthritis patients with concomitant periodontal disease.
Resumo:
Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delayed osseous maturation, expressive-language deficits, and a distinctive facial appearance. Occurrence is generally sporadic, although parent-to-child transmission has been reported on occasion. Employing whole-exome sequencing, we identified heterozygous truncating mutations in SRCAP in five unrelated individuals with sporadic MS. Sanger sequencing identified mutations in SRCAP in eight more affected persons. Mutations were de novo in all six instances in which parental DNA was available. SRCAP is an SNF2-related chromatin-remodeling factor that serves as a coactivator for CREB-binding protein (CREBBP, better known as CBP, the major cause of Rubinstein-Taybi syndrome [RTS]). Five SRCAP mutations, two of which are recurrent, were identified; all are tightly clustered within a small (111 codon) region of the final exon. These mutations are predicted to abolish three C-terminal AT-hook DNA-binding motifs while leaving the CBP-binding and ATPase domains intact. Our findings show that SRCAP mutations are the major cause of FHS and offer an explanation for the clinical overlap between FHS and RTS.
Resumo:
Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical beta-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with KD (equilibrium dissociation constant) values of 2,099.93 +/- 871.03 nM and 1,239.23 +/- 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a KD of 368.63 +/- 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.
Features of two proteins of Leptospira interrogans with potential role in host-pathogen interactions
Resumo:
Background: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (K-D) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a K-D of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.
Resumo:
Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.