955 resultados para Trianon, Treaty of, June 4, 1920
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Radiogenic He-4 is produced by the decay of uranium and thorium in the Earths mantle and crust. From here, it is degassed to the atmosphere(1-5) and eventually escapes to space(1,5,6). Assuming that all of the He-4 produced is degassed, about 70% of the total He-4 degassed from Earth comes from the continental crust(2,-5,7). However, the outgoing flux of crustal He-4 has not been directly measured at the Earths surface(2) and the migration pathways are poorly understood(2-4,7,8). Here we present measurements of helium isotopes and the long-lived cosmogenic radio-isotope Kr-81 in the deep, continental-scale Guarani aquifer in Brazil and show that crustal He-4 reaches the atmosphere primarily by the surficial discharge of deep groundwater. We estimate that He-4 in Guarani groundwater discharge accounts for about 20% of the assumed global flux from continental crust, and that other large aquifers may account for about 33%. Old groundwater ages suggest that He-4 in the Guarani aquifer accumulates over half- to one-million-year timescales. We conclude that He-4 degassing from the continents is regulated by groundwater discharge, rather than episodic tectonic events, and suggest that the assumed steady state between crustal production and degassing of He-4, and its resulting atmospheric residence time, should be re-examined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The ( Z)-4,4,4-trifluoro-3-(2-hydroxyethylamino)-1-(2-hydroxyphenyl)-2-buten-1-one (C12H12F3NO3) compound was thoroughly studied by IR, Raman, UV-visible, and C-13 and F-19 NMR spectroscopies. The solid-state molecular structure was determined by X-ray diffraction methods. It crystallizes in the P2(1)/c space group with a = 12.1420(4) angstrom, b = 7.8210(3) angstrom, c := 13.8970(5) angstrom, beta = 116.162(2)degrees, and Z = 4 molecules per unit cell. The molecule shows a nearly planar molecular skeleton, favored by intramolecular OH center dot center dot center dot 0 and NH center dot center dot center dot 0 bonds, which are arranged in the lattice as an OH center dot center dot center dot 0 bonded polymer coiled around crystallographic 2-fold screw-axes. The three postulated tautomers were evaluated using quantum chemical calculations. The lowest energy tautomer (I) calculated with density functional theory methods agrees with the observed crystal structure. The structural and conformational properties are discussed considering the effect of the intra- and intermolecular hydrogen bond interactions.
Resumo:
In each of two experiments, heifers were assigned to a control group and a unilaterally ablated (UA) group (n = 6/group). In the UA group, follicles >= 4 mm in the left ovary were ablated by transvaginal ultrasound-guided technique at Hour 0 (8:00 AM) on the day of ovulation. Follicles in the CL-bearing right ovary remained intact. In Experiment 1, ablations continued until the next ovulation, and new follicles emerged in the right ovary in 9 of 14 (64%) waves. The number of follicles/wave (combined, 6.4 +/- 0.4) did not differ between groups. In Experiment 2, follicles were counted at Hours 0, 4, 8, 12, and 24; the resistance index (RI) for blood flow in the ovarian pedicle was determined at Hours 0 and 12; and blood samples were collected every hour from Hours 0 to 12 and Hour 24. An increase (P < 0.05) in the number of follicles in the follicle-intact ovary began at Hour 4 with complete compensation by Hour 24. Concentrations of FSH did not change between Hours 0 and 24 in the UA group but decreased (P < 0.05) in the controls by Hour 7. At Hour 12, RI to the right ovary approached being lower (P < 0.06) in the UA group than in the control group. Results indicated that unilateral ablation of follicles >= 4 mm led to compensatory follicle response in the follicle-intact ovary, and initially circulatory FSH concentrations were maintained and blood flow to the follicle-intact ovary increased. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Two Zircaloy 4-Ta alloys (14 and 55 wt.% Ta) were produced by arc-melting. The alloys were hot-rolled at 900 degrees C and heat-treated under argon atmosphere for 100 h at 700 degrees C. The alloys were analyzed by scanning electron microscopy and X-ray diffractometry. The microstructure of both rolled and heat-treated alloys is constituted of (beta Zr,Ta)-II Ta-rich precipitates dispersed in a (alpha Zr) matrix. Corrosion tests performed in boiling concentrated H2SO4 solutions showed that the Zircaloy 4-Ta alloys are more corrosion resistant than Zircaloy 4 and that the corrosion resistance increases with increasing Ta content. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Nine strains of marine-derived fungi (Aspergillus sydowii Ce15, A. sydowii Ce19, Aspergillus sclerotiorum CBMAI 849, Bionectria sp. Ce5, Beauveria felina CBMAI 738, Cladosporium cladosporioides CBMAI 857, Mucor racemosus CBMAI 847, Penicillium citrinum CBMAI 1186, and Penicillium miczynskii Gc5) were screened, catalyzing the asymmetric bioreduction of 1-(4-methoxyphenyl) ethanone 1 to its corresponding 1-(4-methoxyphenyl) ethanol 2. A. sydowii Ce15 and Bionectria sp. Ce5 produced the enantiopure (R)-alcohol 2 (>99% ee) in accordance with the anti-Prelog rule and, the fungi B. felina CBMAI 738 (>99% ee) and P. citrinum CBMAI 1186 (69% ee) in accordance with the Prelog rule. Stereoselective bioreduction by whole cells of marine-derived fungi described by us is important for the production of new reductases from marine-derived fungi.
Resumo:
Background: Cytotoxic T lymphocyte-associated factor 4 (CTLA-4) functions as a negative regulator of T cell-mediated immune response. Molecular changes associated to CTLA-4 gene polymorphisms could reduce its ability to suppress and control lymphocyte proliferation. Aims: To evaluate the frequency of CTLA-4 gene polymorphisms in chronic hepatitis C virus (HCV) infected patients and correlate to clinical and histological findings. Methods: We evaluated 112 HCV-infected subjects prospectively selected and 183 healthy controls. Clinical and liver histological data were analysed. - 318C > T, A49G and CT60 CTLA-4 single-nucleotide polymorphisms (SNPs) were studied by PCR-RFLP and AT(n) polymorphism by DNA fragment analysis by capillary electrophoresis in automatic sequencer. Results: Eight AT repetitions in 3' UTR region were more frequent in HCV-infected subjects. We found a positive association of -318C and + 49G with HCV genotype 3 (P = 0.008, OR 9.13, P = 0.004, OR 2.49 respectively) and an inverse association of both alleles with HCV genotype 1 (P = 0.020, OR 0.19, P = 0.002, OR 0.38 respectively). Allele + 49G was also associated to aminotransferases quotients > 3 (qALT, P = 0.034, qAST, P = 0.041). Allele G of CT60 SNP was also associated with qAST > 3 (P = 0.012). Increased number of AT repetitions was positively associated to severe necroinflammatory activity scores in liver biopsies (P = 0.045, OR 4.62). Conclusion: CTLA-4 gene polymorphisms were associated to HCVinfection. Eight AT repetitions were more prevalent in HCV-infected subjects. - 318C and + 49G alleles were associated to genotypes 1 and 3 infections and increased number of AT repetitions in 3' UTR region favoured severe necroinflammatory activity scores in liver biopsies.
Resumo:
This work assessed the bioremediation of herbicide Velpar K (R), in vitro in aqueous solution, used against weeds in sugar cane in Sao Paulo state. The herbicide contained Hexazinone and Diuron. It was used the microbial inoculant denominated Effective Microorganisms (EM-4), pool of microorganisms from soil that contained lactic and photosynthetic bacteria, fungi, yeasts and actinomycetes for bioremediation. Results for the depth of cultivation on agar-agar inoculated with EM-4 showed the microorganisms growth in the concentrations between 0.2% and 1.0% of the Velpar K (R) in the gel. The analysis of high performance liquid chromatography ( HPLC) showed that the EM-4 was effective for the bioremediation of the herbicide, which reached the values of 80% for diuron and 70% for hexazinone after 21 days in solution of 2:1 of Velpar K (R)/EM-4 ratio. These results could be useful for planning the bioremediation of contaminated areas with Velpar K (R).
Resumo:
A very fast, easy and efficient synthesis is described for a novel and biologically important class of 1,4-disubstituted-4-(5-pyrrolidin-2-one)-1,2,3-triazoles by an ultrasound-assisted one-pot, three-step click reaction sequence of 5-[(trimethylsilyl)ethynyl]pyrrolidin-2-one with organic azides mediated by catalytic Cu-I salts.
Resumo:
Self-assembly of poly(4-vynil-N-alkyl)pyridinium bromide with alkyl side chains of 2, 5, 7, 10, or 16 carbons from ethanolic solutions onto flat silica surfaces was studied by means of ellipsometry, atomic force microscopy (AFM), contact angle measurements, and sum-frequency generation (SFG) vibrational spectroscopy in the CH3 and CH2 stretch region. Ab initio quantum-chemical calculations on the N-alkylpyridinium side-group with restricted Hartree-Fock (RHF) method and 6-311G (d,p) basis set were C one to estimate the charge distribution along the pyridinium ring and the alkyl side-chain. SFG results showed that longer side chains promote the disorientation of the alkyl groups at the surface, corroborating with the contact angle values. AFM images revealed film homogeneity, regardless the alkyl side group. However, after 24 h contact with water, ringlike structures appeared on the film surfaces, when the polycation alkyl side chain had 7 or less carbons, and as the alkyl chain increased to 10 or 16 carbons, the films dewetted because the hydrophobic interactions prevailed over the electrostatic interactions between the pyridinium charged groups and the negatively charged SiO2 surface. Under acid conditions (HCl 0.1 mol.L-1), the film mean thickness values decreased up to 50% of original values when the alkyl side chains were ethyl or pentyl groups due to ion-pair disruption, but for longer groups they remained unchanged. Quantum-chemical optimization and Mulliken electron population showed that (i) from C2 to C15 the positive charge at the headgroup (HG) decreased 0.025, while the charge at combined HG + alpha-CH2 increased 0.037; and (ii) for C6 or longer, the alkyl side group presents a tilt in the geometry, moving away from the plane. Such effects summed up over the whole polymer chain give support to suggest that when the side chains are longer than 7 carbons, the hydrophobic interaction decreases film stability and increases acid resistance.