825 resultados para Transport électrique


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Monte Carlo procedure to simulate the penetration and energy loss of low¿energy electron beams through solids is presented. Elastic collisions are described by using the method of partial waves for the screened Coulomb field of the nucleus. The atomic charge density is approximated by an analytical expression with parameters determined from the Dirac¿Hartree¿Fock¿Slater self¿consistent density obtained under Wigner¿Seitz boundary conditions in order to account for solid¿state effects; exchange effects are also accounted for by an energy¿dependent local correction. Elastic differential cross sections are then easily computed by combining the WKB and Born approximations to evaluate the phase shifts. Inelastic collisions are treated on the basis of a generalized oscillator strength model which gives inelastic mean free paths and stopping powers in good agreement with experimental data. This scattering model is accurate in the energy range from a few hundred eV up to about 50 keV. The reliability of the simulation method is analyzed by comparing simulation results and experimental data from backscattering and transmission measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion channels and transporters play a critical role in ion and fluid homeostasis and thus in normal animal physiology and pathology. Tight regulation of these transmembrane proteins is therefore essential. In recent years, many studies have focused their attention on the role of the ubiquitin system in regulating ion channels and transporters, initialed by the discoveries of the role of this system in processing of Cystic Fibrosis Transmembrane Regulator (CFTR), and in regulating endocytosis of the epithelial Na(+) channel (ENaC) by the Nedd4 family of ubiquitin ligases (mainly Nedd4-2). In this review, we discuss the role of the ubiquitin system in ER Associated Degradation (ERAD) of ion channels, and in the regulation of endocytosis and lysosomal sorting of ion channels and transporters, focusing primarily in mammalian cells. We also briefly discuss the role of ubiquitin like molecules (such as SUMO) in such regulation, for which much less is known so far.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesins and myosins transport cargos to specific locations along microtubules and actin filaments, respectively. The relative contribution of the two transport systems for cell polarization varies extensively in different cell types, with some cells relying exclusively on actin-based transport while others mainly use microtubules. Using fission yeast, we asked whether one transport system can substitute for the other. In this organism, microtubules and actin cables both contribute to polarized growth by transporting cargos to cell poles, but with distinct roles: microtubules transport landmarks to label cell poles for growth and actin assembly but do not directly contribute to the growth process [1]. Actin cables serve as tracks for myosin V delivery of growth vesicles to cell poles [2-4]. We engineered a chimera between the motor domain of the kinesin 7 Tea2 and the globular tail of the myosin V Myo52, which we show transports Ypt3, a myosin cargo receptor, to cell poles along microtubules. Remarkably, this chimera restores polarized growth and viability to cells lacking actin cables. It also bypasses the normal microtubule-dependent marking of cell poles for polarized growth, but not for other functions. Thus, a synthetic motor protein successfully redirects cargos along a distinct cytoskeletal route.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of tripartite synapse suggests that astrocytes make up a functional synapse with pre- and postsynaptic neuronal elements to modulate synaptic transmission through the regulated release of neuromodulators called gliotransmitters. Release of gliotransmitters such as glutamate or D-serine has been shown to depend on Ca21-dependent exocytosis. However, the origin (cytosolic versus vesicular) of the released gliotransmitter is still a matter of debate. The existence of Ca21-regulated exocytosis in astrocytes has been questioned mostly because the nature of secretory organelles which are loaded with gliotransmitters is unknown. Here we show the existence of a population of vesicles that uptakes and stores glutamate and D-serine in astrocytes which are present in situ. Immunoisolated glial organelles expressing synaptobrevin 2 (Sb2) display morphological and biochemical features very similar to synaptic vesicles. We demonstrate that these organelles not only contain and uptake glutamate but also display a glia-specific transport activity for D-serine. Furthermore, we report that the uptake of D-serine is energized by a H1-ATPase present on the immunoisolated vesicles and that cytosolic chloride ions modulate the uptake of D-serine. Finally, we show that serine racemase (SR), the synthesizing enzyme for D-serine, is anchored to the membrane of glial organelles allowing a local and efficient concentration of the gliotransmitter to be transported. We conclude that vesicles in astrocytes do exist with the goal to store and release D-serine, glutamate and most likely other neuromodulators.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lung possesses specific transport systems that intra- and extracellularly maintain salt and fluid balance necessary for its function. At birth, the lungs rapidly transform into a fluid (Na(+))-absorbing organ to enable efficient gas exchange. Alveolar fluid clearance, which mainly depends on sodium transport in alveolar epithelial cells, is an important mechanism by which excess water in the alveoli is reabsorbed during the resolution of pulmonary edema. In this review, we will focus and summarize on the role of ENaC in alveolar lung liquid clearance and discuss recent data from mouse models with altered activity of epithelial sodium channel function in the lung, and more specifically in alveolar fluid clearance. Recent data studying mice with hyperactivity of ENaC or mice with reduced ENaC activity clearly illustrate the impaired lung fluid clearance in these adult mice. Further understanding of the physiological role of ENaC and its regulatory proteins implicated in salt and water balance in the alveolar cells may therefore help to develop new therapeutic strategies to improve gas exchange in pulmonary edema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying transport pathways in fractured rock is extremely challenging as flow is often organized in a few fractures that occupy a very small portion of the rock volume. We demonstrate that saline tracer experiments combined with single-hole ground penetrating radar (GPR) reflection imaging can be used to monitor saline tracer movement within mm-aperture fractures. A dipole tracer test was performed in a granitic aquifer by injecting a saline solution in a known fracture, while repeatedly acquiring single-hole GPR sections in the pumping borehole located 6 m away. The final depth-migrated difference sections make it possible to identify consistent temporal changes over a 30 m depth interval at locations corresponding to fractures previously imaged in GPR sections acquired under natural flow and tracer-free conditions. The experiment allows determining the dominant flow paths of the injected tracer and the velocity (0.4-0.7 m/min) of the tracer front. Citation: Dorn, C., N. Linde, T. Le Borgne, O. Bour, and L. Baron (2011), Single-hole GPR reflection imaging of solute transport in a granitic aquifer, Geophys. Res. Lett., 38, L08401, doi: 10.1029/2011GL047152.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been suggested that a solution to the transport equation which includes anisotropic scattering can be approximated by the solution to a telegrapher's equation [A.J. Ishimaru, Appl. Opt. 28, 2210 (1989)]. We show that in one dimension the telegrapher's equation furnishes an exact solution to the transport equation. In two dimensions, we show that, since the solution can become negative, the telegrapher's equation will not furnish a usable approximation. A comparison between simulated data in three dimensions indicates that the solution to the telegrapher's equation is a good approximation to that of the full transport equation at the times at which the diffusion equation furnishes an equally good approximation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short- and long-term effect of oxytocin on Na+ transport and Na-K-ATPase biosynthesis in the toad bladder, and the potential interaction of this hormone with aldosterone have been studied, leading to the following observations. An early Na+ transport response (oxytocin, 50 mU/ml) peaked at 10-15 min of hormone addition. At maximal stimulation a three- to fourfold increase in Na+ transport was observed, a sustained Na+ transport response (about two-fold control base line) was observed as long as the hormone was present in the medium and for up to 20 h of incubation. Pretreatment for 30 min with actinomycin D (2 micrograms/ml) did not inhibit the early response, but significantly impaired the sustained response, suggesting that de novo protein synthesis was required. The simultaneous addition of the two hormones led within 60 min to a marked potentiation of the action on Na+ transport. This synergism could be mimicked by exogenous cyclic adenosine monophosphate (cAMP). Oxytocin alone (18 h exposure, 50 mU/ml) increased the relative rate of synthesis of both alpha and beta subunits of Na-K-ATPase (1.9- and 1.6-fold, respectively; P less than 0.05), whereas aldosterone (80 nM) increased the relative rate of synthesis of the same subunits (2.6- and 2.2-fold, respectively; P less than 0.02). Finally, in contrast to what was observed at the physiological level, the interaction of oxytocin and aldosterone did not lead to a similar potentiation at the biochemical level, i.e., induction of Na-K-ATPase biosynthesis (2.7- and 2.9-fold, for alpha and beta subunits, respectively; P less than 0.025).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self- and cross-velocity correlation functions and related transport coefficients of molten salts are studied by molecular-dynamics simulation. Six representative systems are considered, i.e., NaCl and KCl alkali halides, CuCl and CuBr noble-metal halides, and SrCl2 and ZnCl2 divalent metal-ion halides. Computer simulation results are compared with experimental self-diffusion coefficients and electrical conductivities. Special attention is paid to dynamic cross correlations and their dependence on the Coulomb interactions as well as on the size and mass differences between anions and cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cholesterol regulates plasma membrane (PM) association and functioning of syntaxin-4 and soluble N-ethylmaleimide-sensitive fusion protein 23 (SNAP23) in the secretory pathway. However, the molecular mechanism and cellular cholesterol pools that determine the localization and assembly of these target membrane SNAP receptors (t-SNAREs) are largely unknown. We recently demonstrated that high levels of annexin A6 (AnxA6) induce accumulation of cholesterol in late endosomes, thereby reducing cholesterol in the Golgi and PM. This leads to an impaired supply of cholesterol needed for cytosolic phospholipase A2 (cPLA2) to drive Golgi vesiculation and caveolin transport to the cell surface. Using AnxA6-overexpressing cells as a model for cellular cholesterol imbalance, we identify impaired cholesterol egress from late endosomes and diminution of Golgi cholesterol as correlating with the sequestration of SNAP23/syntaxin-4 in Golgi membranes. Pharmacological accumulation of late endosomal cholesterol and cPLA2 inhibition induces a similar phenotype in control cells with low AnxA6 levels. Ectopic expression of Niemann-Pick C1 (NPC1) or exogenous cholesterol restores the location of SNAP23 and syntaxin-4 within the PM. Importantly, AnxA6-mediated mislocalization of these t-SNAREs correlates with reduced secretion of cargo via the SNAP23/syntaxin-4¿dependent constitutive exocytic pathway. We thus conclude that inhibition of late endosomal export and Golgi cholesterol depletion modulate t-SNARE localization and functioning along the exocytic pathway.