900 resultados para Transparent conducting oxides
Resumo:
In this paper we have investigated the composition-driven metal-insulator (MI) transitions in two ABO3 classes of perovskite oxides (LaNixCo1-xO3 and NaxTayW1-yO3) in the composition range close to the critical region by using the tunneling technique. Two types of junctions (point-contact and planar) have been used for the investigation covering the temperature range 0.4 K
Resumo:
We report on neutron diffraction study of a new form of conducting amorphous carbon up to Q similar to 14.5 Angstrom(-1). The bond distances from first two peaks in g(r) are 1.45 and 2.49 Angstrom, very similar to those in sputtered truly amorphous carbon films (Li and Lannin, Phys. Rev. Lett. 65 (1990) 1905). The first coordination number is 3.1 (+/- 0.1) indicating predominantly sp(2) hybridisation (ideal no. = 3). However, S(Q) itself shows vestiges of (0 0 2), (1 0) and (1 1) peaks, typical of glassy carbon (Mildner, J. Non-Cryst. Solids 47 (1982) 391). (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
Compounds of the type, LaAFeNbO(6) (A = Ca Sr) have been synthesized to study the electrical and magnetic properties and to examine valence degeneracy. The results show that valence degeneracy is not operative and the compounds are insulating. Magnetic susceptibility data show that part of the Fe is in Fs(2+) state, thus oxidizing part of Nb4+ to Nb5+ by an internal redox mechanism. The presence of mixed valent Fe is confirmed by Mossbauer spectra. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
Equilibrium thermodynamic analysis has been applied to the low-pressure MOCVD process using manganese acetylacetonate as the precursor. ``CVD phase stability diagrams'' have been constructed separately for the processes carried out in argon and oxygen ambient, depicting the compositions of the resulting films as functions of CVD parameters. For the process conduced in argon ambient, the analysis predicts the simultaneous deposition of MnO and elemental carbon in 1: 3 molar proportion, over a range of temperatures. The analysis predicts also that, if CVD is carried out in oxygen ambient, even a very low flow of oxygen leads to the complete absence of carbon in the film deposited oxygen, with greater oxygen flow resulting in the simultaneous deposition of two different manganese oxides under certain conditions. The results of thermodynamic modeling have been verified quantitatively for low-pressure CVD conducted in argon ambient. Indeed, the large excess of carbon in the deposit is found to constitute a MnO/C nanocomposite, the associated cauliflower-like morphology making it a promising candidate for electrode material in supercapacitors. CVD carried out in oxygen flow, under specific conditions, leads to the deposition of more than one manganese oxide, as expected from thermodynamic analysis ( and forming an oxide-oxide nanocomposite). These results together demonstrate that thermodynamic analysis of the MOCVD process can be employed to synthesize thin films in a predictive manner, thus avoiding the inefficient trial-and-error method usually associated with MOCVD process development. The prospect of developing thin films of novel compositions and characteristics in a predictive manner, through the appropriate choice of CVD precursors and process conditions, emerges from the present work.
Resumo:
A combination of numerical and analytical techniques is used to analyse the effect of magnetic field and encapsulated layer on the onset of oscillatory Marangoni instability in a two layer system. Oscillatory Marangoni instability is possible for a deformed free surface only when the system is heated from above. It is observed that the existence of a second layer has a positive effect on Marangoni overstability with magnetic field whereas it has an opposite effect without magnetic field.
Resumo:
The strikingly different charge transport behaviours in nanocomposites of multiwall carbon nanotubes (MWNTs) and conducting polymer polyethylenedioxythiophene-polystyrene-sulfonic-acid (PEDOT-PSS) at low temperatures are explained by probing their conformational properties using small-angle x-ray scattering (SAXS). The SAXS studies indicate the assembly of elongated PEDOT-PSS globules on the walls of nanotubes, coating them partially, thereby limiting the interaction between the nanotubes in the polymer matrix. This results in a charge transport governed mainly by small polarons in the conducting polymer despite the presence of metallic MWNTs. At T > 4 K, hopping of the charge carriers following one-dimensional variable range hopping is evident which also gives rise to a positive magnetoresistance (MR) with an enhanced localization length (similar to 5 nm) due to the presence of MWNTs. However, at T < 4 K, the observation of an unconventional positive temperature coefficient of resistivity is attributed to small polaron tunnelling. The exceptionally large negative MR observed in this temperature regime is conjectured to be due to the presence of quasi-1D MWNTs that can aid in lowering the tunnelling barrier across the nanotube-polymer boundary resulting in large delocalization.
Resumo:
Crystallization behaviors of the glass with a composition of 25Li(2)O.25B(2)O(3).50GeO(2) corresponding to lithium borogermanate LiBGeO4 have been examined. It has been confirmed that the LiBGeO4 crystalline phase is formed at the surface of heat-treated glasses. The second harmonic (SH) generation is found from transparent surface crystallized glasses, demonstrating for the first time that the LiBGeO4 phase shows optical nonlinearity. The SH intensity of LiBGeO4 crystallites (powdered state) prepared through crystallization is about ten times as large as that of pulverized alpha-quartz. The SH intensity of transparent crystallized glasses (bulk state) with crystalline layers of 3-4.5 mum thickness increases with increasing heat treatment temperature (540-560degreesC) and time (1-6 h), and the maximum SH intensity among the samples studied is in the order of 1/10 in comparison with that of alpha-quartz single crystal. The transparent crystallized glass obtained by heat treatment at 550alphaC for 3 h exhibits a clear and fine Maker fringe pattern, indicating a highly orientation of LiBGeO4 crystals at the surface.
Resumo:
Indium-tin oxide films have been deposited by reactive electron beam evaporation of ln+Sn alloy both in neutral and ionized oxygen environments. A low-energy ion source (fabricated in-house) has been used. Films deposited with neutral oxygen exhibited very low optical transmittance (5% at 550 nm). Highly transparent (85%) and low-resistivity (5 X 10(-4) Omega cm) films have been deposited in ionized oxygen at ambient substrate temperature. Optical and electrical properties of the films have been studied as a function of deposition parameters. (C) 2002 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Investigation of the reaction of La2CuO4 with several binary metal oxides in the solid state at elevated temperatures has revealed three different reaction pathways. Reaction of La2CuO4 with strongly acidic oxides such as Re2O7, MoO3, and V2O5 follows a metathesis route, yielding a mixture of products: La3ReO8/La2MoO6/LaVO4 and CuO. Oxides such as TiO2, MnO2, and RuO2 which are not so acidic yield addition products: La2CuMO6 (M = Ti, Mn, Ru). SnO2 is a special case which appears to follow a metathesis route, giving La2Sn2O7 pyrochlore and CuO, which on prolonged reaction transform to the layered perovskite La2CuSnO6. The reaction of La2CuO4 with lower valence oxides VO2 and MoO2, on the other hand, follows a novel redox metathesis route, yielding a mixture of LaVO4/LaCuO2 and La2MoO6/Cu, respectively. This result indicates that it is the redox reactivity involving V-IV + Cu-II --> V-V + Cu-I and Mo-IV + Cu-II --> Mo-VI + Cu-0, and not the acidity of the binary oxide, that controls the nature of the products formed in these cases. The general significance of these results toward the synthesis of complex metal oxides containing several metal atoms is discussed.
Resumo:
Arsenic pollution of water is a major problem faced worldwide. Arsenic is a suspected carcinogen in human beings and is harmful to other living beings. In the present study, a novel adsorbent was used to remove arsenate [As(V)] from synthetic solutions. The adsorbent, which is a mixture of rare earth oxides, was found to adsorb As(V) rapidly and effectively. The effect of various parameters such as contact time, initial concentration, pH, and adsorbent dose on adsorption efficiency was investigated. More than 90% of the adsorption occurred within the first 10 min and the kinetic rate constant was found to be about 3.5 mg min(-1). Adsorption efficiency was found to be dependent on the initial As(V) concentration, and the adsorption behavior followed the Langmuir adsorption model. The optimum pH was found to be 6.5. The presence of other ions such as nitrate, phosphate, sulphate, and silicate decreased the adsorption of As(V) by about 20-30%. The adsorbed As(V) could be desorbed easily by washing the adsorbent with pH 12 solution. This study demonstrates the applicability of naturally occurring rare earth oxides as selective adsorbents for As(V) from solutions.
Resumo:
During stainless steelmaking, reductions of oxides, dissolution of oxides in the slag, and foam formation take place simultaneously. Each of these phenomena independently has been studied by a number of investigators, but little information is available for these phenomena acting simultaneously. Experiments have been conducted to study the simultaneous reduction of oxides of chromium, vanadium, and iron from stainless steelmaking slag by carbon along with the dissolution of alumina in the slag. The overall phenomena and the effect on the chromium oxide reduction have been studied..
Resumo:
Composite ionic conductors based on magnesium salts and sol-gel derived silicate-tetraethylene glycol hybrids have been synthesized. The structure of these materials has been studied by FT-IR, FT-Raman, Si-29 and C-13 NMR and XRD techniques. The composite systems can be best described as diphasic with silicate as filters in the organic phase that provides solubility of the ionic dispersants. The ionic interactions in the matrix are clearly observed in the FT-Raman spectra. The ionic conductivity is determined to be of the order of 10(-7) to 10(-5) S cm(-1) at room temperature for MgCl2 and Mg(ClO4)(2) salts respectively. The conductivity reaches 10(-4) and 10(-3) S cm(-1) at 80degreesC respectively.
Resumo:
The title compound, La14V6CuO36.5, was prepared from a stoichiometric mixture of La2O3,V2O5, and CuO at 1050-1080 degreesC. The compound forms transparent, pale green crystals and was characterized by wavelength dispersive spectroscopy and single crystal X-ray diffraction. The structure contains isolated VO43- tetrahedra and [OCuO](3-) sticks dispersed in a lanthanum oxide network. Films of La14V6CuO36.5 were grown on R-plane sapphire by using pulsed laser deposition. Rutherford backscattering spectroscopic and X-ray diffraction analyses of the films showed oriented growth of the title phase, a similar to5 eV optical band gap and n-type conductivity. The compound is an example of a transparent copper(I) oxide.
Resumo:
Copolymers of aniline and ortholmeta-amino benzoic acid were synthesized by chemical polymerization using an inverse emulsion pathway. The copolymers are soluble in organic solvents, and the solubility increases with the amino benzoic acid content in the feed. The reaction conditions were optimized with emphasis on high yield and relatively good conductivity (2.5 X 10(-1) S cm(-1)). The copolymers were characterized by a number of techniques including UV-vis, FT-IR, FT-Raman, EPR and NNM spectroscopy, thermal analysis, SEM and conductivity. The influence of the carboxylic acid group ring substituent on the copolymers is investigated. The spectral studies reveal that the amino benzoic acid groups restrict the conjugation along the polymer chain. The SEM micrographs of the copolymers reveal regions of amorphous and crystalline domain. Thermal studies indicate a marginally higher thermal stability for poly(aniline-co-m-amino benzoic acid) compared to poly(aniline-co-o-amino benzoic acid). (C) 2002 Elsevier Science Ltd. All rights reserved.