931 resultados para Transformada de Wavelet
Resumo:
Este trabalho apresenta uma análise de algoritmos computacionais aplicados à estimação de fasores elétricos em SEPs. A medição dos fasores é realizada por meio da alocação de Unidades de Medição Fasorial nestes sistemas e encontra diversas aplicações nas áreas de operação, controle, proteção e planejamento. Para que os fasores possam ser aplicados, são definidos padrões de medição, sincronização e comunicação, por meio da norma IEEE C37.118.1. A norma apresenta os padrões de mensagens, timetag, fasores, sistema de sincronização, e define testes para avaliar a estimação. Apesar de abranger todos esses critérios, a diretriz não define um algoritmo de estimação padrão, abrindo espaço para uso de diversos métodos, desde que a precisão seja atendida. Nesse contexto, o presente trabalho analisa alguns algoritmos de estimação de fasores definidos na literatura, avaliando o comportamento deles em determinados casos. Foram considerados, dessa forma, os métodos: Transformada Discreta de Fourier, Método dos Mínimos Quadrados e Transformada Wavelet Discreta, nas versões recursivas e não-recursivas. Esses métodos foram submetidos a sinais sintéticos, a fim de verificar o comportamento diante dos testes propostos pela norma, avaliando o Total Vector Error, tempo de resposta e atraso e overshoot. Os algoritmos também foram embarcados em um hardware, denominado PC104, e avaliados de acordo com os sinais medidos pelo equipamento na saída analógica de um simulador em tempo real (Real Time Digital Simulator).
Resumo:
Vários métodos tradicionais de segmentação de imagens, como a transformada de watershed de marcado- res e métodos de conexidade fuzzy (Relative Fuzzy Connectedness- RFC, Iterative Relative Fuzzy Connected- ness - IRFC), podem ser implementados de modo eficiente utilizando o método em grafos da Transformada Imagem-Floresta (Image Foresting Transform - IFT). No entanto, a carência de termos de regularização de fronteira em sua formulação fazem com que a borda do objeto segmentado possa ser altamente irregular. Um modo de contornar isto é por meio do uso de restrições de forma do objeto, que favoreçam formas mais regulares, como na recente restrição de convexidade geodésica em estrela (Geodesic Star Convexity - GSC). Neste trabalho, apresentamos uma nova restrição de forma, chamada de Faixa de Restrição Geodésica (Geodesic Band Constraint - GBC), que pode ser incorporada eficientemente em uma sub-classe do fra- mework de corte em grafos generalizado (Generalized Graph Cut - GGC), que inclui métodos pela IFT. É apresentada uma prova da otimalidade do novo algoritmo em termos de um mínimo global de uma função de energia sujeita às novas restrições de borda. A faixa de restrição geodésica nos ajuda a regularizar a borda dos objetos, consequentemente melhorando a segmentação de objetos com formas mais regulares, mantendo o baixo custo computacional da IFT. A GBC pode também ser usada conjuntamente com um mapa de custos pré estabelecido, baseado em um modelo de forma, de modo a direcionar a segmentação a seguir uma dada forma desejada, com grau de liberdade de escala e demais deformações controladas por um parâmetro único. Essa nova restrição também pode ser combinada com a GSC e com as restrições de polaridade de borda sem custo adicional. O método é demonstrado em imagens naturais, sintéticas e médicas, sendo estas provenientes de tomografias computadorizadas e de ressonância magnética.
Resumo:
A avaliação perceptivo-auditiva tem papel fundamental no estudo e na avaliação da voz, no entanto, por ser subjetiva está sujeita a imprecisões e variações. Por outro lado, a análise acústica permite a reprodutibilidade de resultados, porém precisa ser aprimorada, pois não analisa com precisão vozes com disfonias mais intensas e com ondas caóticas. Assim, elaborar medidas que proporcionem conhecimentos confiáveis em relação à função vocal resulta de uma necessidade antiga dentro desta linha de pesquisa e atuação clínica. Neste contexto, o uso da inteligência artificial, como as redes neurais artificiais, indica ser uma abordagem promissora. Objetivo: Validar um sistema automático utilizando redes neurais artificiais para a avaliação de vozes rugosas e soprosas. Materiais e métodos: Foram selecionadas 150 vozes, desde neutras até com presença em grau intenso de rugosidade e/ou soprosidade, do banco de dados da Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru (FOB/USP). Dessas vozes, 23 foram excluídas por não responderem aos critérios de inclusão na amostra, assim utilizaram-se 123 vozes. Procedimentos: avaliação perceptivo-auditiva pela escala visual analógica de 100 mm e pela escala numérica de quatro pontos; extração de características do sinal de voz por meio da Transformada Wavelet Packet e dos parâmetros acústicos: jitter, shimmer, amplitude da derivada e amplitude do pitch; e validação do classificador por meio da parametrização, treino, teste e avaliação das redes neurais artificiais. Resultados: Na avaliação perceptivo-auditiva encontrou-se, por meio do teste Coeficiente de Correlação Intraclasse (CCI), concordâncias inter e intrajuiz excelentes, com p = 0,85 na concordância interjuízes e p variando de 0,87 a 0,93 nas concordâncias intrajuiz. Em relação ao desempenho da rede neural artificial, na discriminação da soprosidade e da rugosidade e dos seus respectivos graus, encontrou-se o melhor desempenho para a soprosidade no subconjunto composto pelo jitter, amplitude do pitch e frequência fundamental, no qual obteve-se taxa de acerto de 74%, concordância excelente com a avaliação perceptivo-auditiva da escala visual analógica (0,80 no CCI) e erro médio de 9 mm. Para a rugosidade, o melhor subconjunto foi composto pela Transformada Wavelet Packet com 1 nível de decomposição, jitter, shimmer, amplitude do pitch e frequência fundamental, no qual obteve-se 73% de acerto, concordância excelente (0,84 no CCI), e erro médio de 10 mm. Conclusão: O uso da inteligência artificial baseado em redes neurais artificiais na identificação, e graduação da rugosidade e da soprosidade, apresentou confiabilidade excelente (CCI > 0,80), com resultados semelhantes a concordância interjuízes. Dessa forma, a rede neural artificial revela-se como uma metodologia promissora de avaliação vocal, tendo sua maior vantagem a objetividade na avaliação.
Resumo:
O estudo do movimento pulmonar é assunto de grande interesse na área médica. A observação direta do mesmo é inviável, uma vez que o pulmão colapsa quando a caixa torácica é aberta. Dentre os meios de observação indireta, escolheu-se o imageamento por ressonância magnética em respiração livre e sem uso de nenhum gás para melhorar o contraste ou qualquer informação de sincronismo. Esta escolha propõe diversos desafios, como: a superar a alta variação na qualidade das imagens, que é baixa, em geral, e a suscetibilidade a artefatos, entre outras limitações a serem superadas. Imagens de Tomografia Computadorizada apresentam melhor qualidade e menor tempo de aquisição, mas expõem o paciente a níveis consideráveis de radiação ionizante. É apresentada uma metodologia para segmentação do pulmão, produzindo um conjunto de pontos coordenados. Isto é feito através do processamento temporal da sequência de imagens de RM. Este processamento consiste nas seguintes etapas: geração de imagens temporais (2DSTI), transformada de Hough modificada, algoritmo de contornos ativos e geração de silhueta. A partir de um dado ponto, denominado centro de rotação, são geradas diversas imagens temporais com orientações variadas. É proposta uma formulação modificada da transformada de Hough para determinar curvas parametrizadas que sejam síncronas ao movimento diafragmático, chamados movimentos respiratórios. Também são utilizadas máscaras para delimitar o domínio de aplicação da transformada de Hough. São obtidos movimentos respiratórios que são suavizados pelo algoritmo de contornos ativos e, assim, permitem a geração de contornos para cada quadro pertencente a sequência e, portanto, de uma silhueta do pulmão para cada sequência.
Resumo:
Power line interference is one of the main problems in surface electromyogram signals (EMG) analysis. In this work, a new method based on the stationary wavelet packet transform is proposed to estimate and remove this kind of noise from EMG data records. The performance has been quantitatively evaluated with synthetic noisy signals, obtaining good results independently from the signal to noise ratio (SNR). For the analyzed cases, the obtained results show that the correlation coefficient is around 0.99, the energy respecting to the pure EMG signal is 98–104%, the SNR is between 16.64 and 20.40 dB and the mean absolute error (MAE) is in the range of −69.02 and −65.31 dB. It has been also applied on 18 real EMG signals, evaluating the percentage of energy respecting to the noisy signals. The proposed method adjusts the reduction level to the amplitude of each harmonic present in the analyzed noisy signals (synthetic and real), reducing the harmonics with no alteration of the desired signal.
Resumo:
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of multichannel seismic data. The considered time–frequency transforms include the continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform. The developed approaches provide a fast and precise time–frequency examination of the seismograms at different frequency bands. Moreover, filtering methods for noise, transients or even baseline removal, are implemented. The primary motivation is to support seismologists with a user-friendly and fast program for the wavelet analysis, providing practical and understandable results.
Resumo:
A MATLAB-based computer code has been developed for the simultaneous wavelet analysis and filtering of several environmental time series, particularly focused on the analyses of cave monitoring data. The continuous wavelet transform, the discrete wavelet transform and the discrete wavelet packet transform have been implemented to provide a fast and precise time–period examination of the time series at different period bands. Moreover, statistic methods to examine the relation between two signals have been included. Finally, the entropy of curves and splines based methods have also been developed for segmenting and modeling the analyzed time series. All these methods together provide a user-friendly and fast program for the environmental signal analysis, with useful, practical and understandable results.
Resumo:
Objective: To examine the relationship between the auditory brain-stem response (ABR) and its reconstructed waveforms following discrete wavelet transformation (DWT), and to comment on the resulting implications for ABR DWT time-frequency analysis. Methods: ABR waveforms were recorded from 120 normal hearing subjects at 90, 70, 50, 30, 10 and 0 dBnHL, decomposed using a 6 level discrete wavelet transformation (DWT), and reconstructed at individual wavelet scales (frequency ranges) A6, D6, D5 and D4. These waveforms were then compared for general correlations, and for patterns of change due to stimulus level, and subject age, gender and test ear. Results: The reconstructed ABR DWT waveforms showed 3 primary components: a large-amplitude waveform in the low-frequency A6 scale (0-266.6 Hz) with its single peak corresponding in latency with ABR waves III and V; a mid-amplitude waveform in the mid-frequency D6 scale (266.6-533.3 Hz) with its first 5 waves corresponding in latency to ABR waves 1, 111, V, VI and VII; and a small-amplitude, multiple-peaked waveform in the high-frequency D5 scale (533.3-1066.6 Hz) with its first 7 waves corresponding in latency to ABR waves 1, 11, 111, IV, V, VI and VII. Comparisons between ABR waves 1, 111 and V and their corresponding reconstructed ABR DWT waves showed strong correlations and similar, reliable, and statistically robust changes due to stimulus level and subject age, gender and test ear groupings. Limiting these findings, however, was the unexplained absence of a small number (2%, or 117/6720) of reconstructed ABR DWT waves, despite their corresponding ABR waves being present. Conclusions: Reconstructed ABR DWT waveforms can be used as valid time-frequency representations of the normal ABR, but with some limitations. In particular, the unexplained absence of a small number of reconstructed ABR DWT waves in some subjects, probably resulting from 'shift invariance' inherent to the DWT process, needs to be addressed. Significance: This is the first report of the relationship between the ABR and its reconstructed ABR DWT waveforms in a large normative sample. (C) 2004 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
In deregulated electricity market, modeling and forecasting the spot price present a number of challenges. By applying wavelet and support vector machine techniques, a new time series model for short term electricity price forecasting has been developed in this paper. The model employs both historical price and other important information, such as load capacity and weather (temperature), to forecast the price of one or more time steps ahead. The developed model has been evaluated with the actual data from Australian National Electricity Market. The simulation results demonstrated that the forecast model is capable of forecasting the electricity price with a reasonable forecasting accuracy.