939 resultados para Transform statistics
Resumo:
Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista pienpainatteista, julisteista, toimintakertomuksista ja kunnallisista julkaisuista vuodesta 1991 lähtien. Pienpainatelehdet sisältyvät tilastoon vuodesta 2014 lähtien
Resumo:
Vapaakappalekartuntaan perustuva tilasto Suomessa kustannetuista karttajulkaisuista vuodesta 1991 lähtien
Resumo:
Vapaakappalekartuntaan perustuva tilasto Suomessa julkaistuista dia-, kalvo- ja filmikorttisarjoista vuodesta 1991 lähtien
Resumo:
A census form for the year 1905. The form was approved by the Governor General in Council January 22, 1906.
Resumo:
En France, les changements sociaux, culturels et politiques du tournant des XVIIIe et XIXe siècles vont imposer au romantisme naissant une autre base d’inspiration que l’Antiquité qui fut celle du classicisme : le Moyen Âge. Victor et Hugo et Honoré de Balzac feront partie des auteurs romantiques qui adapteront les ressources imaginaires des œuvres médiévales dont la figure du chevalier. Pourquoi les romantiques ont-ils perçu en cette figure une source de sens ? Quels sont les aménagements nécessaires pour qu’une figure aussi liée au Moyen Âge soit réactualisée dans l’esthétique romantique? Cette étude se propose de répondre à ces question en observant la figure du chevalier dans des œuvres médiévales, Le chevalier de la charrette (Chrétien de Troyes) et Le Lancelot en prose (auteur inconnu), comparée au chevalier romantique présenté dans La légende du beau Pécopin et de la belle Bauldour (Victor Hugo) et Le frère d’armes (Honoré de Balzac). Cette comparaison permettra de mettre en lumière que cette figure est représentée dans ces œuvres transformée et actualisée.
Resumo:
The study deals with the distribution theory and applications of concomitants from the Morgenstern family of bivariate distributions.The Morgenstern system of distributions include all cumulative distributions of the form FX,Y(X,Y)=FX(X) FY(Y)[1+α(1-FX(X))(1-FY(Y))], -1≤α≤1.The system provides a very general expression of a bivariate distributions from which members can be derived by substituting expressions of any desired set of marginal distributions.It is a brief description of the basic distribution theory and a quick review of the existing literature.The Morgenstern family considered in the present study provides a very general expression of a bivariate distribution from which several members can be derived by substituting expressions of any desired set of marginal distributions.Order statistics play a very important role in statistical theory and practice and accordingly a remarkably large body of literature has been devoted to its study.It helps to develop special methods of statistical inference,which are valid with respect to a broad class of distributions.The present study deals with the general distribution theory of Mk, [r: m] and Mk, [r: m] from the Morgenstern family of distributions and discuss some applications in inference, estimation of the parameter of the marginal variable Y in the Morgestern type uniform distributions.
Resumo:
A method for computer- aided diagnosis of micro calcification clusters in mammograms images presented . Micro calcification clus.eni which are an early sign of bread cancer appear as isolated bright spots in mammograms. Therefore they correspond to local maxima of the image. The local maxima of the image is lint detected and they are ranked according to it higher-order statistical test performed over the sub band domain data
Resumo:
Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier Transform (DFT) is among the most commonly used digital signal transforms. The exponential kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT) methods for fast DFT computation exploit these kernel properties in different ways. In this thesis, an approach of grouping data on the basis of the corresponding phase of the exponential kernel of the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real Transform (MRT), for l-D and 2-D signals. The new transform is developed using number theoretic principles as regards its specific features. A few properties of the transform are explored, and an inverse transform presented. A fundamental assumption is that the size of the input signal be even. The transform computation involves only real additions. The MRT is an integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes, while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is applied in image processing applications like image compression and orientation analysis. The MRT & UMRT, being general transforms, will find potential applications in various fields of signal and image processing.
Resumo:
Using a scaling assumption, we propose a phenomenological model aimed to describe the joint probability distribution of two magnitudes A and T characterizing the spatial and temporal scales of a set of avalanches. The model also describes the correlation function of a sequence of such avalanches. As an example we study the joint distribution of amplitudes and durations of the acoustic emission signals observed in martensitic transformations [Vives et al., preceding paper, Phys. Rev. B 52, 12 644 (1995)].