999 resultados para Total Heterotrophic bacteria,
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
This study used a multi-analytical approach based on traditional microbiological methods for cultivation and isolation of heterotrophic bacteria in the laboratory associated with the molecular identification of the isolates and physicochemical analysis of environmental samples. The model chosen for data integration was supported by knowledge from computational neuroscience, and composed by three modules: (i) microbiological parameters, contemplating taxonomic data obtained from the partial sequencing of the 16S rRNA gene from 80 colonies of heterotrophic bacteria isolated by plating method in PCA media. For bacterial colonies isolation were used water samples from Atibaia and Jaguarí rivers collected at the site of water captation for use in effluent treatment, upstream from the entrance of treated effluent from the Paulínia refinery (REPLAN/Petrobras) located in the Paulínia-SP municipality, from the output of the biological treatment plant with stabilization pond and from the raw refinery wastewater; (ii) chemical parameters, ending measures of dissolved oxygen (DO), chemical oxygen demand (COD), biochemical oxygen demand (BOD), chloride, acidity CaCO3, alkalinity, ammonia, nitrite, nitrate, dissolved ions, sulfides, oils and greases; and (iii) physical parameters, comprising the pH determination, conductivity, temperature, transparency, settleable solids, suspended and soluble solids, volatile material, remaining fixing material (RFM), apparent color and turbidity. The results revealed interesting theoretical relationships involving two families of bacteria (Carnobacteriaceae and Aeromonadaceae). Carnobacteriaceae revealed positive theoretical relationships with COD, BOD, nitrate, chloride, temperature, conductivity and apparent color and negative theoretical relationships with the OD. Positive theoretical relationships were shown between Aeromonadaceae and OD and nitrate, while this bacterial family showed negative theoretical...
Resumo:
This study evaluated linear alkylbenzene sulfonate removal in an expanded granular sludge bed reactor with hydraulic retention times of 26 h and 32 h. Sludge bed and separator phase biomass were phylogenetically characterized (sequencing 16S rRNA) and quantified (most probable number) to determine the total anaerobic bacteria and methanogenic Archaea. The reactor was fed with a mineral medium supplemented with 14 mg l(-1) LAS, ethanol and methanol. The stage I-32 h consisted of biomass adaptation (without LAS influent) until reactor stability was achieved (COD removal >97%). In stage II-32 h, LAS removal was 74% due to factors such as dilution, degradation and adsorption. Higher HRT values increased the LAS removal (stage III: 26 h - 48% and stage IV: 32 h - 64%), probably due to increased contact time between the biomass and LAS. The clone libraries were different between samples from the sludge bed (Synergitetes and Proteobacteria) and the separator phase (Firmicutes and Proteobacteria) biomass. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Programa en Oceanografía
Resumo:
[EN]Antarctic krill are known to release large amounts of inorganic and organic nutrients to the water column. Here we test the role of krill excretion of dissolved products in stimulating heterotrophic bacteria on the basis of three experiments where ammonium and organic excretory products released by krill were added to bacterial assemblages, free of grazers. Our results demonstrate that the addition of krill excretion products (but not of ammonium alone), at levels expected in krill swarms, greatly stimulates bacteria resulting in an order-of-magnitude increase in growth and production. Furthermore, they suggest that bacterial growth rate in the Southern Ocean is suppressed well below their potential by resource limitation. Enhanced bacterial activity in the presence of krill, which are major sources of DOC in the Southern Ocean, would further increase recycling processes associated with krill activity, resulting in highly efficient krill-bacterial recycling that should be conducive to stimulating periods of high primary productivity in the Southern Ocean.
Resumo:
This study aimed to identify the microbial contamination of water from dental chair units (DCUs) using the prevalence of Pseudomonas aeruginosa, Legionella species and heterotrophic bacteria as a marker of pollution in water in the area of St. Gallen, Switzerland. Water (250 ml) from 76 DCUs was collected twice (early on a morning before using all the instruments and after using the DCUs for at least two hours) either from the high-speed handpiece tube, the 3 in 1 syringe or the micromotor for water quality testing. An increased bacterial count (>300 CFU/ml) was found in 46 (61%) samples taken before use of the DCU, but only in 29 (38%) samples taken two hours after use. Pseudomonas aeruginosa was found in both water samples in 6/76 (8%) of the DCUs. Legionella were found in both samples in 15 (20%) of the DCUs tested. Legionella anisa was identified in seven samples and Legionella pneumophila was found in eight. DCUs which were less than five years old were contaminated less often than older units (25% und 77%, p<0.001). This difference remained significant (0=0.0004) when adjusted for manufacturer and sampling location in a multivariable logistic regression. A large proportion of the DCUs tested did not comply with the Swiss drinking water standards nor with the recommendations of the American Centers for Disease Control and Prevention (CDC).
Resumo:
Bacterial production assays (thymidine incorporation rates) were used to evaluate the activity of heterotrophic bacteria at the chemocline region in both the East (ELB) and West (WLB) Lobes of permanently ice-covered Lake Bonney, in the Taylor Valley of Antarctica. The magnitude of activity varied dramatically within the depth interval of 1 to 2 m from moderate to very low levels below the chemocline, especially in the East Lobe, where chemical distributions indicate the absence of a normally functioning nitrogen cycle. Several parameters (e.g. addition of nutrients or chelators, dilution) were manipulated in incubation experiments in order to identify factors that would enhance activity in the suboxic deep waters of the East Lobe. Activity, in terms of thymidine incorporation, was consistently detected in the deep-water communities, implying that, although the water may be 'toxic', the cells remain viable. None of the treatments resulted in consistent enhancement of thymidine incorporation rates in samples from below the chemocline. Bacterial populations above the chemocline appear to be phosphorus-limited. The nature of the limitation, toxicity or inhibition that limits bacterial activity in the suboxic waters has not been identified.