798 resultados para Torsional strength.
Resumo:
Power transformer is the most expensive equipment on a substation. It is always necessary to get needed benefit with the lowest expenses. Producing of power transformers with reduced insulation strength is one of the possible ways to reduce expenses. Exploitation of such transformers was begun in the end of 70-th in the last century. Protection from overvoltages was done with valve-type magnetic combined surge arresters with increased blanking voltage during switching overvoltages. Nowadays there is the necessity of replacement of those devices. That’s why modernized nonlinear surge arrester was invented. This master’s thesis is focused on the use research of that modernized device in comparison with usual nonlinear surge arresters. The goal is to show the lightning overvoltages level using different types of nonlinear surge arresters and then calculations of the lightning protection reliability.
High-Performance-Tensile-Strength Alpha-Grass Reinforced Starch-Based Fully Biodegradable Composites
Resumo:
Though there has been a great deal of work concerning the development of natural fibers in reinforced starch-based composites, there is still more to be done. In general, cellulose fibers have lower strength than glass fibers; however, their specific strength is not far from that of fiberglass. In this work, alpha-fibers were obtained from alpha-grass through a mild cooking process. The fibers were used to reinforce a starch-based biopolymer. Composites including 5 to 35% (w/w) alpha-grass fibers in their formulation were prepared, tested, and subsequently compared with those of wood- and fiberglass-reinforced polypropylene (PP). The term “high-performance” refers to the tensile strength of the studied composites and is mainly due to a good interphase, a good dispersion of the fibers inside the matrix, and a good aspect ratio. The tensile strength of the composites showed a linear evolution for fiber contents up to 35% (w/w). The strain at break of the composites decreased with the fiber content and showed the stiffening effects of the reinforcement. The prepared composites showed high mechanical properties, even approaching those of glass fiber reinforced composites
Resumo:
Worldwide cultivation of corn is expanding, due in part to the increasing production of bioethanol. In consequence, huge amounts of corn stalks residues are been produced. Instead of incineration, we transformed the corn stalks into a semichemical pulp and successfully applied it as reinforcement in polypropylene composites. PP composites reinforced with 40% wt corn stalk single fibers were prepared, and their mechanical properties were evaluated. Through mechanical properties modeling of the composites, the intrinsic tensile strength of the cellulosic fibers that constitute the corn stalk have been determined
Resumo:
The effects of ionic strength on ions in aqueous solutions are quite relevant, especially for biochemical systems, in which proteins and amino acids are involved. The teaching of this topic and more specifically, the Debye-Hückel limiting law, is central in chemistry undergraduate courses. In this work, we present a description of an experimental procedure based on the color change of aqueous solutions of bromocresol green (BCG), driven by addition of electrolyte. The contribution of charge product (z+|z-|) to the Debye-Hückel limiting law is demonstrated when the effects of NaCl and Na2SO4 on the color of BCG solutions are compared.
Resumo:
Various strength properties of paper are measured to tell how well it resists breaks in a paper machine or in printing presses. The most often measured properties are dry tensile strength and dry tear strength. However, in many situations where paper breaks, it is not dry. For example, in web breaks after the wet pressing the dry matter content can be around 45%. Thus, wet-web strength is often a more critical paper property than dry strength. Both wet and dry strength properties of the samples were measured with a L&W tensile tester. Originally this device was not designed for the measurement of the wet web tensile strength, thus a new procedure to handle the wet samples was developed. The method was tested with Pine Kraft (never dried). The effect of different strength additives on the wet-web and dry paper tensile strength was studied. The polymers used in this experiment were aqueous solution of a cationic polyamidoamine-epichlorohydrin resin (PAE), cationic hydrophilised polyisocyanate and cationic polyvinylamine (PVAm). From all three used chemicals only Cationic PAE considerably increased the wet web strength. However it was noticed that at constant solids content all chemicals decreased the wet web tensile strength. So, since all chemicals enhanced solid content it can be concluded that they work as drainage aids, not as wet web strength additives. From all chemicals only PVAm increased the dry strength and two other chemicals even decreased the strength. As chemicals were used in strong diluted forms and were injected into the pulp slurry, not on the surface of the papersheets, changes in samples densities did not happen. Also it has to be noted that all these chemicals are mainly used to improve the wet strength after the drying of the web.
Resumo:
The theory part of the Master’s thesis introduces fibres with high tensile strength and elongation used in the production of paper or board. Strong speciality papers are made of bleached softwood long fibre pulp. The aim of the thesis is to find new fibres suitable for paper making to increase either tensile strength, elongation or both properties. The study introduces how fibres bond and what kind of fibres give the strongest bonds into fibre matrix. The fibres that are used the in manufacturing of non-wovens are long and elastic. They are longer than softwood cellulose fibres. The end applications of non-wovens and speciality papers are often the same, for instance, wet napkins or filter media. The study finds out which fibres are used in non-wovens and whether the same fibres could be added to cellulose pulp as armature fibres, what it would require for these fibres to be blended in cellulose, how they would bind with cellulose and whether some binding agents or thermal bonding, such as hot calendaring would be necessary. The following fibres are presented: viscose, polyester, nylon, polyethylene, polypropylene and bicomponent fibres. In the empiric part of the study the most suitable new fibres are selected for making hand sheets in laboratory. Test fibres are blended with long fibre cellulose. The test fibres are viscose (Tencel), polypropylene and polyethylene. Based on the technical values measured in the sheets, the study proposes how to continue trials on paper machine with viscose, polyester, bicomponent and polypropylene fibres.
Resumo:
The objectives of the work were to study the effect of dewatering time varying on formation properties of papersheets, to determine the role of fines fraction in creation of paper with good formation and strength properties of papersheets, and also to study the effect of charge modification of fibers fractionations on formation properties of handsheets. The paper formation is one of the most important structural properties of paper. This property has effect on physical and optical characteristics of paper. In thi work the effect of formation on tensile strength was determined. The formation properties were analyzed by using the AMBERTEC Beta Formation Tester. The PAM addition as a f;locculant agent did some changes in the formation of paper. Paper sheets were also made from different furnishes of both birch and pine pulps. The fibers particles as a fines have great effect on drainability changes. Fines fraction played important role in papermaking. The two kinds of pulps (pine and birch pulps) were also used in this work for investigation of fines role. As it was expected the fines fraction gave positive effect on paper formation, but when fines fraction was added above initial fines content the formation of paper was deteriorated. The effect of paper formation on tensile strength was also determined. In many cases the poor formation of paper had negative effect on strength properties of paper..
Resumo:
The purpose for the thesis was to study the thermo treatment of finger-jointed wood. The thesis concentrated on examining the tensile and bending strength of finger-jointed and thermo treated wood. The aim was to find out how different treatment temperature levels and adhesives influence the strength of wood that has been finger-jointed before heat treatment. Secondary objectives were to examine the influence of the treatment time at one temperature, determine differences in the strength between the joints in heartwood and sapwood, examine the visual appearance of the finger joints after the treatment and establish possibilities to reach a characteristic strength level corresponding to C14. Only minor differences in strength properties were measured between the finger-jointed wood treatments II and III. A greater difference was shown between these two treatment temperatures I, which lead to reduced strength. The average strength of joints glued with adhesive 2 was higher after treatments II and III compared to those glued with the adhesive 1. At the treatment temperature I, the adhesive 1 strength properties were at the same level compared to the adhesive 2 or better. There were not any significant differences.
Resumo:
Offset printing is a popular printing method that is especially suitable for large and fast print jobs. Newspapers, magazines and books are typical examples of products printed with offset method. In high volume printing production high efficiency is essential. Offset printing uses tacky inks that cause serious stress to the paper surface. Dusting and linting are terms that describe how loose and weakly bonded particles are removed from the paper surface in the printing process. The removed particles accumulate in the process causing deteriorating print quality. This forces the printing operators to stop production for washing and cleaning. Time and money are lost. Dusting and linting tendency of paper can be decreased by improving the surface strength of paper. In the present work a method to increase the surface strength of paper was studied. In the literature part offset printing method and challenges related to offset printing are presented. A review of new methods for surface sizing of paper is also presented. The experimental part presents trials where an apparatus for improving paper surface strength was tested and developed in mill scale. Laboratory work supporting the actual mill scale operations is also presented. The acquired results provide a solid base of information to make decisions on how to proceed with research in the present field of study.
Resumo:
Objective: to investigate the effects of preoperative fasting abbreviation with oral supplementation with carbohydrate in the evolution of grip strength in patients undergoing cholecystectomy by laparotomy. Methods : we conducted a clinical, randomizeddouble blind study with adult female patients, aged 18-60 years. Patients were divided into two groups: Control Group, with fasting prescription 6-8h until the time of operation; and Intervention Group, which received prescription of fasting for solids 6-8h before surgery, but ingested an oral supplement containing 12.5% carbohydrate, six (400ml) and two (200ml) hours before theprocedure. The handgrip strength was measured in both hands in both groups, at patient's admission (6h before surgery), the immediate pre-operative time (1h before surgery) and 12-18h postoperatively. Results : we analyzed 27 patients, 14 in the intervention group and 13 in the control group. There was no mortality. The handgrip strength (mean [standard deviation]) was significantly higher in the intervention group in the three periods studied, in at least one hand: preoperatively in the dominant hand (27.8 [2.6] vs 24.1 [3.7] kg; p=0.04), in the immediate preoperative in both hands, and postoperatively in the non-dominant hand (28.5 [3.0] vs 21.3 [5.9] kg; p=0.01). Conclusion : the abbreviation of preoperative fasting to two hours with drink containing carbohydrate improves muscle function in the perioperative period.
Resumo:
The Repair of segmental defects in load-bearing long bones is a challenging task because of the diversity of the load affecting the area; axial, bending, shearing and torsional forces all come together to test the stability/integrity of the bone. The natural biomechanical requirements for bone restorative materials include strength to withstand heavy loads, and adaptivity to conform into a biological environment without disturbing or damaging it. Fiber-reinforced composite (FRC) materials have shown promise, as metals and ceramics have been too rigid, and polymers alone are lacking in strength which is needed for restoration. The versatility of the fiber-reinforced composites also allows tailoring of the composite to meet the multitude of bone properties in the skeleton. The attachment and incorporation of a bone substitute to bone has been advanced by different surface modification methods. Most often this is achieved by the creation of surface texture, which allows bone growth, onto the substitute, creating a mechanical interlocking. Another method is to alter the chemical properties of the surface to create bonding with the bone – for example with a hydroxyapatite (HA) or a bioactive glass (BG) coating. A novel fiber-reinforced composite implant material with a porous surface was developed for bone substitution purposes in load-bearing applications. The material’s biomechanical properties were tailored with unidirectional fiber reinforcement to match the strength of cortical bone. To advance bone growth onto the material, an optimal surface porosity was created by a dissolution process, and an addition of bioactive glass to the material was explored. The effects of dissolution and orientation of the fiber reinforcement were also evaluated for bone-bonding purposes. The Biological response to the implant material was evaluated in a cell culture study to assure the safety of the materials combined. To test the material’s properties in a clinical setting, an animal model was used. A critical-size bone defect in a rabbit’s tibia was used to test the material in a load-bearing application, with short- and long-term follow-up, and a histological evaluation of the incorporation to the host bone. The biomechanical results of the study showed that the material is durable and the tailoring of the properties can be reproduced reliably. The Biological response - ex vivo - to the created surface structure favours the attachment and growth of bone cells, with the additional benefit of bioactive glass appearing on the surface. No toxic reactions to possible agents leaching from the material could be detected in the cell culture study when compared to a nontoxic control material. The mechanical interlocking was enhanced - as expected - with the porosity, whereas the reinforcing fibers protruding from the surface of the implant gave additional strength when tested in a bone-bonding model. Animal experiments verified that the material is capable of withstanding load-bearing conditions in prolonged use without breaking of the material or creating stress shielding effects to the host bone. A Histological examination verified the enhanced incorporation to host bone with an abundance of bone growth onto and over the material. This was achieved with minimal tissue reactions to a foreign body. An FRC implant with surface porosity displays potential in the field of reconstructive surgery, especially regarding large bone defects with high demands on strength and shape retention in load-bearing areas or flat bones such as facial / cranial bones. The benefits of modifying the strength of the material and adjusting the surface properties with fiber reinforcement and bone-bonding additives to meet the requirements of different bone qualities are still to be fully discovered.
Resumo:
PURPOSE: This study investigated short-term changes in body composition, handgrip strength, and presence of lymphedema in women who underwent breast cancer surgery.METHODS: Ninety-five women participated in a cross-sectional study, divided into two groups: Control (n=46), with healthy women, and Experimental (n=49), with women six months after breast cancer surgery . The Experimental Group was subdivided into right total mastectomy (RTM, n=15), left total mastectomy (LTM, n=11), right quadrant (RQ, n=13), and left quadrant (LQ, n=10). It was also redistributed among women with presence (n=10) or absence (n=39) of lymphedema. Presence of lymphedema, handgrip strength, and body composition were assessed.RESULTS: Trunk lean mass and handgrip strength were decreased in the Experimental Group. Total lean mass was increased in the LTM compared to RTM or LQ. Left handgrip strength in LTM was decreased compared to RTM and RQ and in LQ compared to RTM and RQ. Finally, total lean mass, trunk fat mass, trunk lean mass, right and left arm lean mass were increased in women with lymphedema.CONCLUSIONS: Breast cancer survivors have changes in their body composition and in handgrip strength six months after surgery; however, the interaction between the type of surgery and its impact is unclear. Furthermore, women who developed lymphedema in this period showed more significant changes in the body composition, but they were not enough to cause impairment in handgrip strength.
Resumo:
High strength steel (HSS) has been in use in workshops since the 1980s. At that time, the significance of the term HSS differed from the modern conception as the maximum yield strength of HSSs has increased nearly every year. There are three different ways to make HSS. The first and oldest method is QT (quenched and tempered) followed by the TMCP (thermomechanical controlled process) and DQ (direct quenching) methods. This thesis consists of two parts, the first of which part introduces the research topic and discusses welded HSS structures by characterizing the most important variables. In the second part of the thesis, the usability of welded HSS structures is examined through a set of laboratory tests. The results of this study explain the differences in the usability of the welded HSSs made by the three different methods. The results additionally indicate that usage of different HSSs in the welded structures presumes that manufacturers know what kind of HSS they are welding. As manufacturers use greater strength HSSs in welded structures, the demands for welding rise as well. Therefore, during the manufacturing process, factors such as heat input, cooling time, weld quality, and more must be under careful observation.
Resumo:
The capacity of beams is a very important factor in the study of durability of structures and structural members. The capacity of a high-strength steel I-beam made of S960 QC was investigated in this study. The investigation included assessment of the service limits and ultimate limits of the steel beam. The thesis was done according to European standards for steel structures, Eurocode 3. An analytical method was used to determine the throat thickness, deformation, elastic and plastic moment capacities as well as the fatigue life of the beam. The results of the analytical method were compared with those obtained by Finite Element Analysis (FEA). Elastic moment capacity obtained by the analytical method was 172 kNm. FEA and the analytical method predicted the maximum lateral-torsional buckling (LTB) capacity in the range of 90-93 kNm and the probability of failure as a result of LTB is estimated to be 50%. The lateral buckling capacity meant that the I-beam can carry a safe load of 300 kN instead of the initial load of 600 kN. The beam is liable to fail shortly after exceeding the elastic moment capacity. Based on results in of the different approaches, it was noted that FEA predicted higher deformation values on the load-deformation curve than the analytical results. However, both FEA and the analytical methods predicted identical results for nominal stress range and moment capacities. Fatigue life was estimated to be in the range of 53000-64000 cycles for bending stress range using crack propagation equation and strength-life approach. As Eurocode 3 is limited to steel grades up to S690, results for S960 must be verified with experimental data and appropriate design rules.