972 resultados para Tectono-stratigraphy
Resumo:
Calcareous nannofossils are abundant in the Paleogene sediments recovered during Ocean Drilling Program Leg 120. Although no continuous Paleogene section was obtained, Sites 747 through 751 complemented each other so as to provide a virtually complete composite stratigraphic section. The calcareous nannofossil biostratigraphy at Sites 747, 748, and 749 is discussed. Correlation of calcareous nannofossil biozones and magnetozones at these sites suggests some diachrony with low-latitude areas, as well as on a regional basis. Changes in calcareous nannofossil diversity throughout the Paleogene are analyzed and interpreted as reflecting major paleoclimatic events.
Resumo:
A relatively complete lower Paleocene to lower Oligocene sequence was recovered from the Southern High of Shatsky Rise at Sites 1209, 1210, and 1211. The sequence consists of nannofossil ooze and clay-rich nannofossil ooze. Samples from these sites have been the target of intensive calcareous nannofossil biostratigraphic investigations. Calcareous nannofossils are moderately preserved in most of the recovered sequence, which extends from nannofossil Zones CP1 to CP16. Most traditional zonal markers are present; however, the rarity and poor preservation of key species in the uppermost Paleocene and lower Eocene inhibits zonal subdivision of part of this sequence.
Resumo:
The benthic stable isotope record from ODP Site 761 (Wombat Plateau, NW Australia, 2179.3 m water depth) documents complete recovery of the middle Miocene delta13C excursion corresponding to the climatic optimum and subsequent expansion of the East Antarctic Ice Sheet. The six main delta13C maxima of the "Monterey Excursion" between 16.4 and 13.6 Ma and the characteristic stepped increase in delta18O between 14.5 and 13.9 Ma are clearly identified. The sedimentary record of the shallower ODP Sites 1126 and 1134 [Great Australian Bight (GAB), SWAustralia, 783.8 and 701 m water depth, respectively] is truncated by several unconformities. However, a composite benthic stable isotope curve for these sites provides a first middle Miocene bathyal record for southwest Australia. The delta18O and delta13C curves for Sites 1126 and 1134 indicate a cooler, better-ventilated water mass at ~700 m water depth in the Great Australian Bight since approximately 16 Ma. This cooler and younger water mass probably originated from a close southern source. Cooling of the bottom water at ~16 Ma started much earlier than at other sites of equivalent paleodepths in the central and western parts of the Indian Ocean. At Site 761, the delta18O curve shows an excellent match with the global sea level curve between ~11.5 and 15.1 Ma, and thus closely reflects changes in global ice volume. Prior to 15.1 Ma, the mismatch between the delta18O curve and the sea level curve indicates that delta18O fluctuations are mainly due to changes in bottom water temperature.
Resumo:
Six sites were drilled on the southern Iberia Abyssal Plain during Ocean Drilling Program (ODP) Leg 173. Three holes (1067A, 1068A, and 1069A) recovered Eocene sediments consisting of thinly bedded turbidite deposits with interbedded hemipelagic sediments (Bouma sequence Te) deposited near the calcite compensation depth. The hemipelagic sediments are barren of nannofossils, necessitating the use of the turbidite deposits to erect an Eocene biostratigraphy for these holes. Moderately preserved, diverse assemblages of nannofossils were recovered from silty clays (Bouma sequence Td) and poorly preserved, less diverse assemblages were recovered from sandy/silty clays (Bouma sequence Tc). Hole 1067A has a continuous record of sedimentation (Subzones CP9a-CP14a) and Holes 1068A and 1069A have similar continuous records (Subzones CP9a-CP12a), although all holes contain barren intervals. Holes 1067A, 1068A, 1069A, 900A (ODP Leg 149), and 398D (Deep Sea Drilling Project Leg 47B) display a similar increase in mass accumulation rates in the lowermost middle Eocene. A reliable Eocene biostratigraphy has been erected using nannofossil data from turbidite sequences, allowing for correlation between Iberia Abyssal Plain sites.
Resumo:
The Messinian was a time of major climatic and paleoceanographic change during the late Cenozoic. It is well known around the Mediterranean region because of the giant anhydritelgypsum sequence and the suggested desiccation of the Mediterranean Sea. However, this interval is less constrained outside the Mediterranean region, where several paleoceanographic changes could have taken place because of the desiccation. Hence, we present an integrated stratigraphic framework for future Messinian paleoceanographic studies, determination of the effect of the Mediterranean desiccation on deep-water paleoceanography, and comparison of intra-Mediterranean paleoceanographic changes with those in the open oceans during the Messinian Stage. Four DSDP/ODP Holes (552A, 646B, 608, and 547A) from the North Atlantic Ocean and one land borehole from Morocco have been studied to integrate bio-, magneto-, and stable isotope Messinian stratigraphy with high resolution sampling. Our results produce the best assessment of the Tortonian/Messinian boundaries in all holes because they do not rely on any one signal. In paleomagnetic Subchronozone C3An1r in the Sale borehole and DSDP Site 609, a S/D coiling direction change of Neogloboquadrina pachyderma/acostaensis appears to indicate PMOW entering the northeastern Atlantic Ocean, at least reaching 50°N. Diachrony and synchrony of some important Messinian planktic foraminifera from these Atlantic DSDP/ODP holes and the Sale borehole, such as the LO of Gq. dehiscens, the LO of Gt. Eenguaensis, the FO and LO of Ct. conomiozea, the FO of Gt. margaritae s.s., the FO of Gt. puncticutata, and the FO of Gt. crassaformis are discussed for understanding some of the paleoceanographic changes. This integrated stratigraphic framework presented here allows much better North Atlantic correlations at this critical point in Messinian geologic history.
Resumo:
Cyst assemblages from Sites 548, 549, and 550 were examined and gave evidence of early Eocene to late Miocene age. These assemblages were compared with other North Atlantic DSDP sites and with onshore sections in Denmark, southern England, Spain, and Italy. Some environmental interpretation is attempted for the Miocene assemblages; pollen, spores, and dinoflagellate cyst species were used to interpret the proximity of the shoreline. Key species are illustrated, along with some forms that are not discussed.