890 resultados para Tchebyshev metrics
Resumo:
Our essay aims at studying suitable statistical methods for the clustering ofcompositional data in situations where observations are constituted by trajectories ofcompositional data, that is, by sequences of composition measurements along a domain.Observed trajectories are known as “functional data” and several methods have beenproposed for their analysis.In particular, methods for clustering functional data, known as Functional ClusterAnalysis (FCA), have been applied by practitioners and scientists in many fields. To ourknowledge, FCA techniques have not been extended to cope with the problem ofclustering compositional data trajectories. In order to extend FCA techniques to theanalysis of compositional data, FCA clustering techniques have to be adapted by using asuitable compositional algebra.The present work centres on the following question: given a sample of compositionaldata trajectories, how can we formulate a segmentation procedure giving homogeneousclasses? To address this problem we follow the steps described below.First of all we adapt the well-known spline smoothing techniques in order to cope withthe smoothing of compositional data trajectories. In fact, an observed curve can bethought of as the sum of a smooth part plus some noise due to measurement errors.Spline smoothing techniques are used to isolate the smooth part of the trajectory:clustering algorithms are then applied to these smooth curves.The second step consists in building suitable metrics for measuring the dissimilaritybetween trajectories: we propose a metric that accounts for difference in both shape andlevel, and a metric accounting for differences in shape only.A simulation study is performed in order to evaluate the proposed methodologies, usingboth hierarchical and partitional clustering algorithm. The quality of the obtained resultsis assessed by means of several indices
Resumo:
La tomodensitométrie (CT) est une technique d'imagerie dont l'intérêt n'a cessé de croître depuis son apparition dans le début des années 70. Dans le domaine médical, son utilisation est incontournable à tel point que ce système d'imagerie pourrait être amené à devenir victime de son succès si son impact au niveau de l'exposition de la population ne fait pas l'objet d'une attention particulière. Bien évidemment, l'augmentation du nombre d'examens CT a permis d'améliorer la prise en charge des patients ou a rendu certaines procédures moins invasives. Toutefois, pour assurer que le compromis risque - bénéfice soit toujours en faveur du patient, il est nécessaire d'éviter de délivrer des doses non utiles au diagnostic.¦Si cette action est importante chez l'adulte elle doit être une priorité lorsque les examens se font chez l'enfant, en particulier lorsque l'on suit des pathologies qui nécessitent plusieurs examens CT au cours de la vie du patient. En effet, les enfants et jeunes adultes sont plus radiosensibles. De plus, leur espérance de vie étant supérieure à celle de l'adulte, ils présentent un risque accru de développer un cancer radio-induit dont la phase de latence peut être supérieure à vingt ans. Partant du principe que chaque examen radiologique est justifié, il devient dès lors nécessaire d'optimiser les protocoles d'acquisitions pour s'assurer que le patient ne soit pas irradié inutilement. L'avancée technologique au niveau du CT est très rapide et depuis 2009, de nouvelles techniques de reconstructions d'images, dites itératives, ont été introduites afin de réduire la dose et améliorer la qualité d'image.¦Le présent travail a pour objectif de déterminer le potentiel des reconstructions itératives statistiques pour réduire au minimum les doses délivrées lors d'examens CT chez l'enfant et le jeune adulte tout en conservant une qualité d'image permettant le diagnostic, ceci afin de proposer des protocoles optimisés.¦L'optimisation d'un protocole d'examen CT nécessite de pouvoir évaluer la dose délivrée et la qualité d'image utile au diagnostic. Alors que la dose est estimée au moyen d'indices CT (CTDIV0| et DLP), ce travail a la particularité d'utiliser deux approches radicalement différentes pour évaluer la qualité d'image. La première approche dite « physique », se base sur le calcul de métriques physiques (SD, MTF, NPS, etc.) mesurées dans des conditions bien définies, le plus souvent sur fantômes. Bien que cette démarche soit limitée car elle n'intègre pas la perception des radiologues, elle permet de caractériser de manière rapide et simple certaines propriétés d'une image. La seconde approche, dite « clinique », est basée sur l'évaluation de structures anatomiques (critères diagnostiques) présentes sur les images de patients. Des radiologues, impliqués dans l'étape d'évaluation, doivent qualifier la qualité des structures d'un point de vue diagnostique en utilisant une échelle de notation simple. Cette approche, lourde à mettre en place, a l'avantage d'être proche du travail du radiologue et peut être considérée comme méthode de référence.¦Parmi les principaux résultats de ce travail, il a été montré que les algorithmes itératifs statistiques étudiés en clinique (ASIR?, VEO?) ont un important potentiel pour réduire la dose au CT (jusqu'à-90%). Cependant, par leur fonctionnement, ils modifient l'apparence de l'image en entraînant un changement de texture qui pourrait affecter la qualité du diagnostic. En comparant les résultats fournis par les approches « clinique » et « physique », il a été montré que ce changement de texture se traduit par une modification du spectre fréquentiel du bruit dont l'analyse permet d'anticiper ou d'éviter une perte diagnostique. Ce travail montre également que l'intégration de ces nouvelles techniques de reconstruction en clinique ne peut se faire de manière simple sur la base de protocoles utilisant des reconstructions classiques. Les conclusions de ce travail ainsi que les outils développés pourront également guider de futures études dans le domaine de la qualité d'image, comme par exemple, l'analyse de textures ou la modélisation d'observateurs pour le CT.¦-¦Computed tomography (CT) is an imaging technique in which interest has been growing since it first began to be used in the early 1970s. In the clinical environment, this imaging system has emerged as the gold standard modality because of its high sensitivity in producing accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase of the number of CT examinations performed has raised concerns about the potential negative effects of ionizing radiation on the population. To insure a benefit - risk that works in favor of a patient, it is important to balance image quality and dose in order to avoid unnecessary patient exposure.¦If this balance is important for adults, it should be an absolute priority for children undergoing CT examinations, especially for patients suffering from diseases requiring several follow-up examinations over the patient's lifetime. Indeed, children and young adults are more sensitive to ionizing radiation and have an extended life span in comparison to adults. For this population, the risk of developing cancer, whose latency period exceeds 20 years, is significantly higher than for adults. Assuming that each patient examination is justified, it then becomes a priority to optimize CT acquisition protocols in order to minimize the delivered dose to the patient. Over the past few years, CT advances have been developing at a rapid pace. Since 2009, new iterative image reconstruction techniques, called statistical iterative reconstructions, have been introduced in order to decrease patient exposure and improve image quality.¦The goal of the present work was to determine the potential of statistical iterative reconstructions to reduce dose as much as possible without compromising image quality and maintain diagnosis of children and young adult examinations.¦The optimization step requires the evaluation of the delivered dose and image quality useful to perform diagnosis. While the dose is estimated using CT indices (CTDIV0| and DLP), the particularity of this research was to use two radically different approaches to evaluate image quality. The first approach, called the "physical approach", computed physical metrics (SD, MTF, NPS, etc.) measured on phantoms in well-known conditions. Although this technique has some limitations because it does not take radiologist perspective into account, it enables the physical characterization of image properties in a simple and timely way. The second approach, called the "clinical approach", was based on the evaluation of anatomical structures (diagnostic criteria) present on patient images. Radiologists, involved in the assessment step, were asked to score image quality of structures for diagnostic purposes using a simple rating scale. This approach is relatively complicated to implement and also time-consuming. Nevertheless, it has the advantage of being very close to the practice of radiologists and is considered as a reference method.¦Primarily, this work revealed that the statistical iterative reconstructions studied in clinic (ASIR? and VECO have a strong potential to reduce CT dose (up to -90%). However, by their mechanisms, they lead to a modification of the image appearance with a change in image texture which may then effect the quality of the diagnosis. By comparing the results of the "clinical" and "physical" approach, it was showed that a change in texture is related to a modification of the noise spectrum bandwidth. The NPS analysis makes possible to anticipate or avoid a decrease in image quality. This project demonstrated that integrating these new statistical iterative reconstruction techniques can be complex and cannot be made on the basis of protocols using conventional reconstructions. The conclusions of this work and the image quality tools developed will be able to guide future studies in the field of image quality as texture analysis or model observers dedicated to CT.
Resumo:
We consider electroencephalograms (EEGs) of healthy individuals and compare the properties of the brain functional networks found through two methods: unpartialized and partialized cross-correlations. The networks obtained by partial correlations are fundamentally different from those constructed through unpartial correlations in terms of graph metrics. In particular, they have completely different connection efficiency, clustering coefficient, assortativity, degree variability, and synchronization properties. Unpartial correlations are simple to compute and they can be easily applied to large-scale systems, yet they cannot prevent the prediction of non-direct edges. In contrast, partial correlations, which are often expensive to compute, reduce predicting such edges. We suggest combining these alternative methods in order to have complementary information on brain functional networks.
Resumo:
BACKGROUND: The goals of our study are to determine the most appropriate model for alcohol consumption as an exposure for burden of disease, to analyze the effect of the chosen alcohol consumption distribution on the estimation of the alcohol Population- Attributable Fractions (PAFs), and to characterize the chosen alcohol consumption distribution by exploring if there is a global relationship within the distribution. METHODS: To identify the best model, the Log-Normal, Gamma, and Weibull prevalence distributions were examined using data from 41 surveys from Gender, Alcohol and Culture: An International Study (GENACIS) and from the European Comparative Alcohol Study. To assess the effect of these distributions on the estimated alcohol PAFs, we calculated the alcohol PAF for diabetes, breast cancer, and pancreatitis using the three above-named distributions and using the more traditional approach based on categories. The relationship between the mean and the standard deviation from the Gamma distribution was estimated using data from 851 datasets for 66 countries from GENACIS and from the STEPwise approach to Surveillance from the World Health Organization. RESULTS: The Log-Normal distribution provided a poor fit for the survey data, with Gamma and Weibull distributions providing better fits. Additionally, our analyses showed that there were no marked differences for the alcohol PAF estimates based on the Gamma or Weibull distributions compared to PAFs based on categorical alcohol consumption estimates. The standard deviation of the alcohol distribution was highly dependent on the mean, with a unit increase in alcohol consumption associated with a unit increase in the mean of 1.258 (95% CI: 1.223 to 1.293) (R2 = 0.9207) for women and 1.171 (95% CI: 1.144 to 1.197) (R2 = 0. 9474) for men. CONCLUSIONS: Although the Gamma distribution and the Weibull distribution provided similar results, the Gamma distribution is recommended to model alcohol consumption from population surveys due to its fit, flexibility, and the ease with which it can be modified. The results showed that a large degree of variance of the standard deviation of the alcohol consumption Gamma distribution was explained by the mean alcohol consumption, allowing for alcohol consumption to be modeled through a Gamma distribution using only average consumption.
Resumo:
When one wishes to implement public policies, there is a previous need of comparing different actions and valuating and evaluating them to assess their social attractiveness. Recently the concept of well-being has been proposed as a multidimensional proxy for measuring societal prosperity and progress; a key research topic is then on how we can measure and evaluate this plurality of dimensions for policy decisions. This paper defends the thesis articulated in the following points: 1. Different metrics are linked to different objectives and values. To use only one measurement unit (on the grounds of the so-called commensurability principle) for incorporating a plurality of dimensions, objectives and values, implies reductionism necessarily. 2. Point 1) can be proven as a matter of formal logic by drawing on the work of Geach about moral philosophy. This theoretical demonstration is an original contribution of this article. Here the distinction between predicative and attributive adjectives is formalised and definitions are provided. Predicative adjectives are further distinguished into absolute and relative ones. The new concepts of set commensurability and rod commensurability are introduced too. 3. The existence of a plurality of social actors, with interest in the policy being assessed, causes that social decisions involve multiple types of values, of which economic efficiency is only one. Therefore it is misleading to make social decisions based only on that one value. 4. Weak comparability of values, which is grounded on incommensurability, is proved to be the main methodological foundation of policy evaluation in the framework of well-being economics. Incommensurability does not imply incomparability; on the contrary incommensurability is the only rational way to compare societal options under a plurality of policy objectives. 5. Weak comparability can be implemented by using multi-criteria evaluation, which is a formal framework for applied consequentialism under incommensurability. Social Multi-Criteria Evaluation, in particular, allows considering both technical and social incommensurabilities simultaneously.
Resumo:
Supported by IEEE 802.15.4 standardization activities, embedded networks have been gaining popularity in recent years. The focus of this paper is to quantify the behavior of key networking metrics of IEEE 802.15.4 beacon-enabled nodes under typical operating conditions, with the inclusion of packet retransmissions. We corrected and extended previous analyses by scrutinizing the assumptions on which the prevalent Markovian modeling is generally based. By means of a comparative study, we singled out which of the assumptions impact each of the performance metrics (throughput, delay, power consumption, collision probability, and packet-discard probability). In particular, we showed that - unlike what is usually assumed - the probability that a node senses the channel busy is not constant for all the stages of the backoff procedure and that these differences have a noticeable impact on backoff delay, packet-discard probability, and power consumption. Similarly, we showed that - again contrary to common assumption - the probability of obtaining transmission access to the channel depends on the number of nodes that is simultaneously sensing it. We evidenced that ignoring this dependence has a significant impact on the calculated values of throughput and collision probability. Circumventing these and other assumptions, we rigorously characterize, through a semianalytical approach, the key metrics in a beacon-enabled IEEE 802.15.4 system with retransmissions.
Resumo:
User generated content shared in online communities is often described using collaborative tagging systems where users assign labels to content resources. As a result, a folksonomy emerges that relates a number of tags with the resources they label and the users that have used them. In this paper we analyze the folksonomy of Freesound, an online audio clip sharing site which contains more than two million users and 150,000 user-contributed sound samplescovering a wide variety of sounds. By following methodologies taken from similar studies, we compute some metrics that characterize the folksonomy both at the globallevel and at the tag level. In this manner, we are able to betterunderstand the behavior of the folksonomy as a whole, and also obtain some indicators that can be used as metadata for describing tags themselves. We expect that such a methodology for characterizing folksonomies can be useful to support processes such as tag recommendation or automatic annotation of online resources.
Resumo:
Silver Code (SilC) was originally discovered in [1–4] for 2×2 multiple-input multiple-output (MIMO) transmission. It has non-vanishing minimum determinant 1/7, slightly lower than Golden code, but is fast-decodable, i.e., it allows reduced-complexity maximum likelihood decoding [5–7]. In this paper, we present a multidimensional trellis-coded modulation scheme for MIMO systems [11] based on set partitioning of the Silver Code, named Silver Space-Time Trellis Coded Modulation (SST-TCM). This lattice set partitioning is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding, while the branch metrics are computed by using a sphere-decoding algorithm. It is shown that the proposed SST-TCM performs very closely to the Golden Space-Time Trellis Coded Modulation (GST-TCM) scheme, yetwith a much reduced decoding complexity thanks to its fast-decoding property.
Resumo:
This paper presents 3-D brain tissue classificationschemes using three recent promising energy minimizationmethods for Markov random fields: graph cuts, loopybelief propagation and tree-reweighted message passing.The classification is performed using the well knownfinite Gaussian mixture Markov Random Field model.Results from the above methods are compared with widelyused iterative conditional modes algorithm. Theevaluation is performed on a dataset containing simulatedT1-weighted MR brain volumes with varying noise andintensity non-uniformities. The comparisons are performedin terms of energies as well as based on ground truthsegmentations, using various quantitative metrics.
Resumo:
The application of correspondence analysis to square asymmetrictables is often unsuccessful because of the strong role played by thediagonal entries of the matrix, obscuring the data off the diagonal. A simplemodification of the centering of the matrix, coupled with the correspondingchange in row and column masses and row and column metrics, allows the tableto be decomposed into symmetric and skew--symmetric components, which canthen be analyzed separately. The symmetric and skew--symmetric analyses canbe performed using a simple correspondence analysis program if the data areset up in a special block format.
Resumo:
Organizations often face the challenge of communicating their strategiesto local decision makers. The difficulty presents itself in finding away to measure performance wich meaningfully conveys how to implement theorganization's strategy at local levels. I show that organizations solvethis communication problem by combining performance measures in such away that performance gains come closest to mimicking value-added asdefined by the organization's strategy. I further show how organizationsrebalance performance measures in response to changes in their strategies.Applications to the design of performance metrics, gaming, and divisionalperformance evaluation are considered. The paper also suggests severalempirical ways to evaluate the practical importance of the communicationrole of measurement systems.
Resumo:
1. Aim - Concerns over how global change will influence species distributions, in conjunction with increased emphasis on understanding niche dynamics in evolutionary and community contexts, highlight the growing need for robust methods to quantify niche differences between or within taxa. We propose a statistical framework to describe and compare environmental niches from occurrence and spatial environmental data.¦2. Location - Europe, North America, South America¦3. Methods - The framework applies kernel smoothers to densities of species occurrence in gridded environmental space to calculate metrics of niche overlap and test hypotheses regarding niche conservatism. We use this framework and simulated species with predefined distributions and amounts of niche overlap to evaluate several ordination and species distribution modeling techniques for quantifying niche overlap. We illustrate the approach with data on two well-studied invasive species.¦4. Results - We show that niche overlap can be accurately detected with the framework when variables driving the distributions are known. The method is robust to known and previously undocumented biases related to the dependence of species occurrences on the frequency of environmental conditions that occur across geographic space. The use of a kernel smoother makes the process of moving from geographical space to multivariate environmental space independent of both sampling effort and arbitrary choice of resolution in environmental space. However, the use of ordination and species distribution model techniques for selecting, combining and weighting variables on which niche overlap is calculated provide contrasting results.¦5. Main conclusions - The framework meets the increasing need for robust methods to quantify niche differences. It is appropriate to study niche differences between species, subspecies or intraspecific lineages that differ in their geographical distributions. Alternatively, it can be used to measure the degree to which the environmental niche of a species or intraspecific lineage has changed over time.
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.
Resumo:
In this paper we explore the mechanisms that allow securities analysts to value companies in contexts of Knightian uncertainty, that is, in the face of information that is unclear, subject to unforeseeable contingencies or to multiple interpretations. We address this question with a grounded-theory analysis of the reports written on Amazon.com by securities analyst Henry Blodget and rival analysts during the years 1998-2000. Our core finding is that analysts' reports are structured by internally consistent associations that includecategorizations, key metrics and analogies. We refer to these representations as calculative frames, and propose that analysts function as frame-makers - that is, asspecialized intermediaries that help investors value uncertain stocks. We conclude by considering the implications of frame-making for the rise of new industry categories, analysts' accuracy, and the regulatory debate on analysts'independence.