961 resultados para Tasmanian devil facial tumour disease
Resumo:
Automated feature extraction and correspondence determination is an extremely important problem in the face recognition community as it often forms the foundation of the normalisation and database construction phases of many recognition and verification systems. This paper presents a completely automatic feature extraction system based upon a modified volume descriptor. These features form a stable descriptor for faces and are utilised in a reversible jump Markov chain Monte Carlo correspondence algorithm to automatically determine correspondences which exist between faces. The developed system is invariant to changes in pose and occlusion and results indicate that it is also robust to minor face deformations which may be present with variations in expression.
Resumo:
The somatosensory system plays an important role in balance control and age-related changes to this system have been implicated in falls. Parkinson’s disease (PD) is a chronic and progressive disease of the brain, characterized by postural instability and gait disturbance. Previous research has shown that deficiencies in somatosensory feedback may contribute to the poorer postural control demonstrated by PD individuals. However, few studies have comprehensively explored differences in somatosensory function and postural control between PD participants and healthy older individuals. The soles of the feet contain many cutaneous mechanoreceptors that provide important somatosensory information sources for postural control. Different types of insole devices have been developed to enhance this somatosensory information and improve postural stability, but these devices are often too complex and expensive to integrate into daily life. Textured insoles provide a more passive intervention that may be an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. However, to date, there has been little work conducted to test the efficacy of enhanced somatosensory input induced by textured insoles in both healthy and PD populations during standing and walking. Therefore, the aims of this thesis were to determine: 1) whether textured insole surfaces can improve postural stability by enhancing somatosensory information in younger and older adults, 2) the differences between healthy older participants and PD participants for measures of physiological function and postural stability during standing and walking, 3) how changes in somatosensory information affect postural stability in both groups during standing and walking; and 4), whether textured insoles can improve postural stability in both groups during standing and walking. To address these aims, Study 1 recruited seven older individuals and ten healthy young controls to investigate the effects of two textured insole surfaces on postural stability while performing standing balance tests on a force plate. Participants were tested under three insole surface conditions: 1) barefoot; 2) standing on a hard textured insole surface; and 3), standing on a soft textured insole surface. Measurements derived from the centre of pressure displacement included the range of anterior-posterior and medial-lateral displacement, path length and the 90% confidence elliptical area (C90 area). Results of study 1 revealed a significant Group*Surface*Insole interaction for the four measures. Both textured insole surfaces reduced postural sway for the older group, especially in the eyes closed condition on the foam surface. However, participants reported that the soft textured insole surface was more comfortable and, hence, the soft textured insoles were adopted for Studies 2 and 3. For Study 2, 20 healthy older adults (controls) and 20 participants with Parkinson’s disease were recruited. Participants were evaluated using a series of physiological assessments that included touch sensitivity, vibratory perception, and pain and temperature threshold detection. Furthermore, nerve function and somatosensory evoked potentials tests were utilized to provide detailed information regarding peripheral nerve function for these participants. Standing balance and walking were assessed on different surfaces using a force plate and the 3D Vicon motion analysis system, respectively. Data derived from the force plate included the range of anterior-posterior and medial-lateral sway, while measures of stride length, stride period, cadence, double support time, stance phase, velocity and stride timing variability were reported for the walking assessment. The results of this study demonstrated that the PD group had decrements in somatosensory function compared to the healthy older control group. For electrodiagnosis, PD participants had poorer nerve function than controls, as evidenced by slower nerve conduction velocities and longer latencies in sural nerve and prolonged latency in the P37 somatosensory evoked potential. Furthermore, the PD group displayed more postural sway in both the anterior-posterior and medial-lateral directions relative to controls and these differences were increased when standing on a foam surface. With respect to the gait assessment, the PD group took shorter strides and had a reduced stride period compared with the control group. Furthermore, the PD group spent more time in the stance phase and had increased cadence and stride timing variability than the controls. Compared with walking on the firm surface, the two groups demonstrated different gait adaptations while walking on the uneven surface. Controls increased their stride length and stride period and decreased their cadence, which resulted in a consistent walking velocity on both surfaces. Conversely, while the PD patients also increased their stride period and decreased their cadence and stance period on the uneven surface, they did not increase their stride length and, hence walked slower on the uneven surface. In the PD group, there was a strong positive association between decreased somatosensory function and decreased clinical balance, as assessed by the Tinetti test. Poorer somatosensory function was also strongly positively correlated with the temporospatial gait parameters, especially shorter stride length. Study 3 evaluated the effects of manipulating the somatosensory information from the plantar surface of the feet using textured insoles in the same populations assessed in Study 2. For this study, participants performed the standing and walking balance tests under three footwear conditions: 1) barefoot; 2) with smooth insoles; and 3), with textured insoles. Standing balance and walking were evaluated using a force plate and a Vicon motion analysis system and the data were analysed in the same way outlined for Study 2. The findings showed that the smooth and textured insoles caused different effects on postural control during both the standing and walking trials. Both insoles decreased medial-lateral sway to the same level on the firm surface. The greatest benefits were observed in the PD group while wearing the textured insole. When standing under a more challenging condition on the foam surface with eyes closed, only the textured insole decreased medial-lateral sway in the PD group. With respect to the gait trials, both insoles increased walking velocity, stride length and stride time and decreased cadence, but these changes were more pronounced for the textured insoles. The effects of the textured insoles were evident under challenging conditions in the PD group and increased walking velocity and stride length, while decreasing cadence. Textured insoles were also effective in reducing the time spent in the double support and stance phases of the gait cycle and did not increase stride timing variability, as was the case for the smooth insoles for the PD group. The results of this study suggest that textured insoles, such as those evaluated in this research, may provide a low-cost means of improving postural stability in high-risk groups, such as people with PD, which may act as an important intervention to prevent falls.
Resumo:
Facial expression is an important channel of human social communication. Facial expression recognition (FER) aims to perceive and understand emotional states of humans based on information in the face. Building robust and high performance FER systems that can work in real-world video is still a challenging task, due to the various unpredictable facial variations and complicated exterior environmental conditions, as well as the difficulty of choosing a suitable type of feature descriptor for extracting discriminative facial information. Facial variations caused by factors such as pose, age, gender, race and occlusion, can exert profound influence on the robustness, while a suitable feature descriptor largely determines the performance. Most present attention on FER has been paid to addressing variations in pose and illumination. No approach has been reported on handling face localization errors and relatively few on overcoming facial occlusions, although the significant impact of these two variations on the performance has been proved and highlighted in many previous studies. Many texture and geometric features have been previously proposed for FER. However, few comparison studies have been conducted to explore the performance differences between different features and examine the performance improvement arisen from fusion of texture and geometry, especially on data with spontaneous emotions. The majority of existing approaches are evaluated on databases with posed or induced facial expressions collected in laboratory environments, whereas little attention has been paid on recognizing naturalistic facial expressions on real-world data. This thesis investigates techniques for building robust and high performance FER systems based on a number of established feature sets. It comprises of contributions towards three main objectives: (1) Robustness to face localization errors and facial occlusions. An approach is proposed to handle face localization errors and facial occlusions using Gabor based templates. Template extraction algorithms are designed to collect a pool of local template features and template matching is then performed to covert these templates into distances, which are robust to localization errors and occlusions. (2) Improvement of performance through feature comparison, selection and fusion. A comparative framework is presented to compare the performance between different features and different feature selection algorithms, and examine the performance improvement arising from fusion of texture and geometry. The framework is evaluated for both discrete and dimensional expression recognition on spontaneous data. (3) Evaluation of performance in the context of real-world applications. A system is selected and applied into discriminating posed versus spontaneous expressions and recognizing naturalistic facial expressions. A database is collected from real-world recordings and is used to explore feature differences between standard database images and real-world images, as well as between real-world images and real-world video frames. The performance evaluations are based on the JAFFE, CK, Feedtum, NVIE, Semaine and self-collected QUT databases. The results demonstrate high robustness of the proposed approach to the simulated localization errors and occlusions. Texture and geometry have different contributions to the performance of discrete and dimensional expression recognition, as well as posed versus spontaneous emotion discrimination. These investigations provide useful insights into enhancing robustness and achieving high performance of FER systems, and putting them into real-world applications.
Resumo:
Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.
Resumo:
Prostate cancer is the second most common cause of cancer related deaths in Western men. Despite the significant improvements in current treatment techniques, there is no cure for advanced metastatic, castrate-resistant disease. Early detection and prevention of progression to a castrate-resistant state may provide new strategies to improve survival. A number of growth factors have been shown to act in an autocrine/paracrine manner to modulate prostate cancer tumour growth. Our laboratory has previously shown that ghrelin and its receptors (the functional GHS-R1a and the non-functional GHS-R1b) are expressed in prostate cancer specimens and cell lines. We have shown that ghrelin increases cell proliferation in the PC3 and LNCaP prostate cancer cell lines through activation of ERK1/2, suggesting that ghrelin could regulate prostate cancer cell growth and play a role in the progression of the disease. Ghrelin is a 28 amino-acid peptide hormone, identified to be the natural ligand of the growth hormone secretagogue receptor (GHS-R1a). It is well characterised as a growth hormone releasing and as an orexigenic peptide that stimulates appetite and feeding and regulates energy expenditure and bodyweight. In addition to its orexigenic properties, ghrelin has been shown to play a regulatory role in a number of systems, including the reproductive, immune and cardiovascular systems and may play a role in a number of pathological conditions such as chronic heart failure, anorexia, cachexia, obesity, diabetes and cancer. In cancer, ghrelin and its receptor are expressed in a range of tumours and cancer cell lines and ghrelin has been demonstrated to modulate cell proliferation, apoptosis, migration and invasion in some cell types. The ghrelin gene (GHRL) encodes preproghrelin peptide, which is processed to produce three currently known functional peptides - ghrelin, desacyl ghrelin and obestatin. Prohormone convertases (PCs) have been shown to cleave the preproghrelin peptide into two primary products - the 28 amino acid peptide, ghrelin, and the remaining 117 amino acid C-terminal peptide, C-ghrelin. C-ghrelin can then be further processed to produce the 23 amino acid peptide, obestatin. Ghrelin circulates in two different forms - an octanoylated form (known as ghrelin) and a non-octanoylated form, desacyl ghrelin. The unique post-translational addition of octanoic acid to the serine 3 residue of the propeptide chain to form acylated ghrelin is catalysed by ghrelin O-acyltransferase (GOAT). This modification is necessary for binding of ghrelin to its only known functional receptor, the GHS-R1a. As desacyl ghrelin cannot bind and activate the GHS-R1a, it was initially thought to be an inactive peptide, despite the fact that it circulates at much higher levels than ghrelin. Further research has demonstrated that desacyl ghrelin is biologically active and shares some of the actions of ghrelin, as well as having some opposing and distinct roles. Interestingly, both ghrelin and desacyl ghrelin have been shown to modulate apoptosis, cell differentiation and proliferation in some cell types, and to stimulate cell proliferation through activation of ERK1/2 and PI3K/Akt pathways. The third known peptide product of the ghrelin preprohormone, obestatin, was initially thought to oppose the actions of ghrelin in appetite regulation and food intake and to mediate its effects through the G protein-coupled receptor 39 (GPR39). Subsequent research failed to reproduce the initial findings, however, and the possible anorexigenic effects of obestatin, as well as the identity of its receptor, remain unclear. Obestatin plays some important physiological roles, including roles in improving memory, the inhibition of thirst and anxiety, increased secretion of pancreatic juice, and regulation of cell proliferation, survival, apoptosis and differentiation. Preliminary studies have also shown that obestatin stimulates cell proliferation in some cell types through activation of ERK1/2, Akt and PKC pathways. Overall, however, at the commencement of this PhD project, relatively little was known regarding the functions and mechanisms of action of the preproghrelin-derived functional peptides in modulating prostate cancer cell proliferation. The roles of obestatin, and desacyl ghrelin as potential growth factors had not previously been investigated, and the potential expression and regulation of the preproghrelin processing enzymes, GOAT and prohormone convertases was unknown in prostate cancer cell lines. Therefore, the overall objectives of this study were to: 1. investigate the effects of obestatin on cell proliferation and signaling in prostate cancer cell lines 2. compare the effects of desacyl ghrelin and ghrelin on cell proliferation and signaling in prostate cancer cell lines 3. investigate whether prostate cancer cell lines possess the necessary enzymatic machinery to produce ghrelin and desacyl ghrelin and if these peptides can regulate GOAT expression Our laboratory has previously shown that ghrelin stimulates cell proliferation in the PC3 and LNCaP prostate cancer cell line through activation of the ERK1/2 pathway. In this study it has been demonstrated that treatments with either ghrelin, desacyl ghrelin or obestatin over 72 hours significantly increased cell proliferation in the PC3 prostate cancer cell line but had no significant effect in the RWPE-1 transformed normal prostate cell line. Ghrelin (1000nM) stimulated cell proliferation in the PC3 prostate cancer cell line by 31.66 6.68% (p<0.01) with the WST-1 method, and 13.55 5.68% (p<0.05) with the CyQUANT assay. Desacyl ghrelin (1000nM) increased cell proliferation in PC3 cells by 21.73 2.62% (p<0.01) (WST-1), and 15.46 7.05% (p<0.05) (CyQUANT) above untreated control. Obestatin (1000nM) induced a 28.37 7.47% (p<0.01) (WST-1) and 12.14 7.47% (p<0.05) (CyQUANT) significant increase in cell proliferation in the PC3 prostate cancer cell line. Ghrelin and desacyl ghrelin treatments stimulated Akt and ERK phosphorylation across a range of concentrations (p<0.01). Obestatin treatment significantly stimulated Akt, ERK and PKC phosphorylation (p<0.05). Through the use of specific inhibitors, the MAPK inhibitor U0126 and the Akt1/2 kinase inhibitor, it was demonstrated that ghrelin- and obestatin-induced cell proliferation in the PC3 prostate cancer cell line is mediated through activation of ERK1/2 and Akt pathways. Although desacyl ghrelin significantly stimulated Akt and ERK phosphorylation, U0126 failed to prevent desacyl ghrelin-induced cell proliferation suggesting ghrelin and desacyl ghrelin might act through different mechanisms to increase cell proliferation. Ghrelin and desacyl ghrelin have shown a proliferative effect in osteoblasts, pancreatic -cells and cardiomyocytes through activation of ERK1/2 and PI3K/Akt pathways. Here it has been shown that ghrelin and its non-acylated form exert the same function and stimulate cell proliferation in the PC3 prostate cancer cell line through activation of the Akt pathway. Ghrelin-induced proliferation was also mediated through activation of the ERK1/2 pathway, however, desacyl ghrelin seems to stimulate cell proliferation in an ERK1/2-independent manner. As desacyl ghrelin does not bind and activate GHSR1a, the only known functional ghrelin receptor, the finding that both ghrelin and desacyl ghrelin stimulate cell proliferation in the PC3 cell line suggests that these peptides could be acting through the yet unidentified alternative ghrelin receptor in this cell type. Obestatin treatment also stimulated PKC phosphorylation, however, a direct role for this pathway in stimulating cell proliferation could not be proven using available PKC pathway inhibitors, as they caused significant cell death over the extended timeframe of the cell proliferation assays. Obestatin has been shown to stimulate cell proliferation through activation of PKC isoforms in human retinal epithelial cells and in the human gastric cancer cell line KATO-III. We have demonstrated that all of the prostate-derived cell lines examined (PC3, LNCaP, DU145, 22Rv1, RWPE-1 and RWPE-2) expressed GOAT and at least one of the prohormone convertases, which are known to cleave the proghrelin peptide, PC1/3, PC2 and furin, at the mRNA level. These cells, therefore, are likely to possess the necessary machinery to cleave the preproghrelin protein and to produce the mature ghrelin and desacyl ghrelin peptides. In addition to prohormone convertases, the presence of octanoic acid is essential for acylated ghrelin production. In this study octanoic acid supplementation significantly increased cell proliferation in the PC3 prostate cancer cell line by over 20% compared to untreated controls (p<0.01), but surprisingly, not in the DU145, LNCaP or 22Rv1 prostate cancer cell lines or in the RWPE-1 and RWPE-2 prostate-derived cell lines. In addition, we demonstrated that exogenous ghrelin induced a statistically significant two-fold decrease in GOAT mRNA expression in the PC3 cell line (p<0.05), suggesting that ghrelin could pontentially downregulate its own acylation and, therefore, regulate the balance between ghrelin and desacyl ghrelin. This was not observed, however, in the DU145 and LNCaP prostate cancer cell lines. The GOAT-ghrelin system represents a direct link between ingested nutrients and regulation of ghrelin production and the ghrelin/desacyl ghrelin ratio. Regulation of ghrelin acylation is a potentially attractive and desirable tool for the development of better therapies for a number of pathological conditions where ghrelin has been shown to play a key role. The finding that desacyl ghrelin stimulates cell proliferation in the PC3 prostate cancer cell line, and responds to ghrelin in the same way, suggests that this cell line expresses an alternative ghrelin receptor. Although all the cell lines examined expressed both GHS-R1a and GHS-R1b mRNA, it remains uncertain whether these cell lines express the unidentified alternative ghrelin receptor. It is possible that the varied responses seen could be due to the expression of different ghrelin receptors in different cell lines. In addition to GOAT, prohormone convertases and octanoic acid availability may regulate the production of different peptides from the ghrelin preprohormone. The studies presented in this thesis provide significant new information regarding the roles and mechanisms of action of the preproghrelin-derived peptides, ghrelin, desacyl ghrelin and obestatin, in modulating prostate cancer cell line proliferation. A number of key questions remain to be resolved, however, including the identification of the alternative ghrelin/desacyl ghrelin receptor, the identification of the obestatin receptor, a clarification of the signaling mechanisms which mediate cell proliferation in response to obestatin treatment and a better understanding of the regulation at both the gene and post-translational levels of functional peptide generation. Further studies investigating the role of the ghrelin axis using in vivo prostate cancer models may be warranted. Until these issues are determined, the potential for the ghrelin axis, to be recognised as a novel useful target for therapy for cancer or other pathologies will be uncertain.
Resumo:
In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet Process mixture (DPM) model for this task. This model is defined by the placement of the Dirichlet Process (DP) on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson’s disease (PD) is considered, with symptom profiles collected using the Unified Parkinson’s Disease Rating Scale (UPDRS). Clustering, Dirichlet Process mixture, Parkinson’s disease, UPDRS.
Resumo:
Background Seasonal changes in cardiovascular disease (CVD) risk factors may be due to exposure to seasonal environmental variables like temperature and acute infections or seasonal behavioural patterns in physical activity and diet. Investigating the seasonal pattern of risk factors should help determine the causes of the seasonal pattern in CVD. Few studies have investigated the seasonal variation in risk factors using repeated measurements from the same individual, which is important as individual and population seasonal patterns may differ. Methods The authors investigated the seasonal pattern in systolic and diastolic blood pressure, heart rate, body weight, total cholesterol, triglycerides, high-density lipoprotein cholesterol, C reactive protein and fibrinogen. Measurements came from 38 037 participants in the population-based cohort, the Tromsø Study, examined up to eight times from 1979 to 2008. Individual and population seasonal patterns were estimated using a cosinor in a mixed model. Results All risk factors had a highly statistically significant seasonal pattern with a peak time in winter, except for triglycerides (peak in autumn), C reactive protein and fibrinogen (peak in spring). The sizes of the seasonal variations were clinically modest. Conclusions Although the authors found highly statistically significant individual seasonal patterns for all risk factors, the sizes of the changes were modest, probably because this subarctic population is well adapted to a harsh climate. Better protection against seasonal risk factors like cold weather could help reduce the winter excess in CVD observed in milder climates.
Resumo:
Parkinson’s disease (PD) is a progressive, chronic neurodegenerative disorder for which there is no known cure. Physical exercise programs may be used to assist with the physical management of PD. Several studies have demonstrated that community based physical therapy programs are effective in reducing physical aspects of disability among people with PD. While multidisciplinary therapy interventions may have the potential to reduce disability and improve the quality of life of people with PD, there is very limited clinical trial evidence to support or refute the use of a community based multidisciplinary or interdisciplinary programs for people with PD. A two group randomized trial is being undertaken within a community rehabilitation service in Brisbane, Australia. Community dwelling adults with a diagnosis of Idiopathic Parkinson’s disease are being recruited. Eligible participants are randomly allocated to a standard exercise rehabilitation group program or an intervention group which incorporates physical, cognitive and speech activities in a multi-tasking framework. Outcomes will be measured at 6-week intervals for a period of six months. Primary outcome measures are the Montreal Cognitive Assessment (MoCA) and the Timed Up and Go (TUG) cognitive test. Secondary outcomes include changes in health related quality of life, communication, social participation, mobility, strength and balance, and carer burden measures. This study will determine the immediate and long-term effectiveness of a unique multifocal, interdisciplinary, dual-tasking approach to the management of PD as compared to an exercise only program. We anticipate that the results of this study will have implications for the development of cost effective evidence based best practice for the treatment of people with PD living in the community.
Resumo:
Objective The spondylarthritides (SpA), including ankylosing spondylitis (AS), psoriatic arthritis (PsA), reactive arthritis, and arthritis associated with inflammatory bowel disease, cause chronic inflammation of the large peripheral and axial joints, eyes, skin, ileum, and colon. Genetic studies reveal common candidate genes for AS, PsA, and Crohn's disease, including IL23R, IL12B, STAT3, and CARD9, all of which are associated with interleukin-23 (IL-23) signaling downstream of the dectin 1 β-glucan receptor. In autoimmune-prone SKG mice with mutated ZAP-70, which attenuates T cell receptor signaling and increases the autoreactivity of T cells in the peripheral repertoire, IL-17–dependent inflammatory arthritis developed after dectin 1–mediated fungal infection. This study was undertaken to determine whether SKG mice injected with 1,3-β-glucan (curdlan) develop evidence of SpA, and the relationship of innate and adaptive autoimmunity to this process. Methods SKG mice and control BALB/c mice were injected once with curdlan or mannan. Arthritis was scored weekly, and organs were assessed for pathologic features. Anti–IL-23 monoclonal antibodies were injected into curdlan-treated SKG mice. CD4+ T cells were transferred from curdlan-treated mice to SCID mice, and sera were analyzed for autoantibodies. Results After systemic injection of curdlan, SKG mice developed enthesitis, wrist, ankle, and sacroiliac joint arthritis, dactylitis, plantar fasciitis, vertebral inflammation, ileitis resembling Crohn's disease, and unilateral uveitis. Mannan triggered spondylitis and arthritis. Arthritis and spondylitis were T cell– and IL-23–dependent and were transferable to SCID recipients with CD4+ T cells. SpA was associated with collagen- and proteoglycan-specific autoantibodies. Conclusion Our findings indicate that the SKG ZAP-70W163C mutation predisposes BALB/c mice to SpA, resulting from innate and adaptive autoimmunity, after systemic β-glucan or mannan exposure.
Resumo:
Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS
Resumo:
After more than 25 years of published investigation, including randomized controlled trials, the role of omega-3 polyunsaturated fatty acids in the treatment of kidney disease remains unclear. In vitro and in vivo experimental studies support the efficacy of omega-3 polyunsaturated fatty acids on inflammatory pathways involved with the progression of kidney disease. Clinical investigations have focused predominantly on immunoglobulin A (IgA) nephropathy. More recently, lupus nephritis, polycystic kidney disease, and other glomerular diseases have been investigated. Clinical trials have shown conflicting results for the efficacy of omega-3 polyunsaturated fatty acids in IgA nephropathy, which may relate to varying doses, proportions of eicosapentaenoic acid and docosahexaenoic acid, duration of therapy, and sample size of the study populations. Meta-analyses of clinical trials using omega-3 polyunsaturated fatty acids in IgA nephropathy have been limited by the quality of available studies. However, guidelines suggest that omega-3 polyunsaturated fatty acids should be considered in progressive IgA nephropathy. Omega-3 polyunsaturated fatty acids decrease blood pressure, a known accelerant of kidney disease progression. Well-designed, adequately powered, randomized, controlled clinical trials are required to further investigate the potential benefits of omega-3 polyunsaturated fatty acids on the progression of kidney disease and patient survival.
Resumo:
Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) that is activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. Cleavage of this receptor exposes a neoepitope, termed the tethered ligand (TL), which binds intramolecularly within the receptor to stimulate signal transduction via coupled G proteins. PAR2-mediated signal transduction is also experimentally stimulated by hexapeptides (agonist peptides; APs) that are homologous to the TL sequence. Due to the irreversible nature of PAR2 proteolysis, downstream signal transduction is tightly regulated. Following activation, PAR2 is rapidly uncoupled from downstream signalling by the post-translational modifications phosphorylation and ubiquination which facilitate interactions with â- arrestin. This scaffolding protein couples PAR2 to the internalisation machinery initiating its desensitisation and trafficking through the early and late endosomes followed by receptor degradation. PAR2 is widely expressed in mammalian tissues with key roles for this receptor in cardiovascular, respiratory, nervous and musculoskeletal systems. This receptor has also been linked to pathological states with aberrant expression and signalling noted in several cancers. In prostate cancer, PAR2 signalling induces migration and proliferation of tumour derived cell lines, while elevated receptor expression has been noted in malignant tissues. Importantly, a role for this receptor has also been suggested in prostate cancer bone metastasis as coexpression of PAR2 and a proteolytic activator has been demonstrated by immunohistochemical analysis. Based on these data, the primary focus of this project has been on two aspects of PAR2 biology. The first is characterisation of cellular mechanisms that regulate PAR2 signalling and trafficking. The second aspect is the role of this receptor in prostate cancer bone metastasis. In addition, to permit these studies, it was first necessary to evaluate the specificity of the commercially available anti-PAR2 antibodies SAM11, C17, N19 and H99. The evaluation of the four commercially available antibodies was assessed using four techniques: immunoprecipitation; Western blot analysis; immunofluorescence; and flow cytometry. These approaches demonstrated that three of the antibodies efficiently detect ectopically expressed PAR2 by each of these techniques. A significant finding from this study was that N19 was the only antibody able to specifically detect N-glycosylated endogenous PAR2 by Western blot analysis. This analysis was performed on lysates from prostate cancer derived cell lines and tissue derived from wildtype and PAR2 knockout mice. Importantly, further evaluation demonstrated that this antibody also efficiently detects endogenous PAR2 at the cell surface by flow cytometry. The anti-PAR2 antibody N19 was used to explore the in vitro role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Significantly, use of the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling experiments using two approaches which showed that PAR2 stably expressed by CHO cells is palmitoylated and that palmitoylation occurs on cysteine 361. Another key finding from this study is that palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ~9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. Importantly, this study also identified that palmitoylation of this receptor within the Golgi apparatus is required for efficient agonist-induced rab11amediated trafficking of PAR2 to the cell surface. Interestingly, palmitoylation is also required for receptor desensitization, as agonist-induced â-arrestin recruitment and receptor degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. Collectively, these data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor. This project also evaluated PAR2 residues involved in ligand docking. Although the extracellular loop (ECL)2 of PAR2 is known to be required for agonist-induced signal transduction, the binding pocket for receptor agonists remains to be determined. In silico homology modelling, based on a crystal structure for the prototypical GPCR rhodopsin, and ligand docking were performed to identify PAR2 transmembrane (TM) amino acids potentially involved in agonist binding. These methods identified 12 candidate residues that were mutated to examine the binding site of the PAR2 TL, revealed by trypsin cleavage, as well as of the soluble ligands 2f-LIGRLO-NH2 and GB110, which are both structurally based on the AP SLIGRLNH2. Ligand binding was evaluated from the impact of the mutated residues on PAR2-mediated calcium mobilisation. An important finding from these experiments was that mutation of residues Y156 and Y326 significantly reduced 2f-LIGRLO-NH2 and GB110 agonist activity. L307 was also important for GB110 activity. Intriguingly, mutation of PAR2 residues did not alter trypsin-induced signalling to the same extent as for the soluble agonists. The reason for this difference remains to be further examined by in silico and in vitro experimentation and, potentially, crystal structure studies. However, these findings identified the importance of TM domains in PAR2 ligand docking and will enhance the design of both PAR2 agonists and potentially agents to inhibit signalling (antagonists). The potential importance of PAR2 in prostate cancer bone metastasis was examined using a mouse model. In patients, prostate cancer bone metastases cause bone growth by disrupting bone homeostasis. In an attempt to mimic prostate cancer growth in bone, PAR2 responsive 22Rv1 prostate cancer cells, which form mixed osteoblastic and osteolytic lesions, were injected into the proximal aspect of mouse tibiae. A role for PAR2 was assessed by treating these mice with the recently developed PAR2 antagonist GB88. As controls, animals bearing intra-tibial tumours were also treated with vehicle (olive oil) or the prostate cancer chemotherapeutic docetaxel. The effect of these treatments on bone was examined radiographically and by micro-CT. Consistent with previous studies, 22Rv1 tumours caused osteoblastic periosteal spicule formation and concurrent osteolytic bone loss. Significantly, blockade of PAR2 signalling reduced the osteoblastic and osteolytic phenotype of 22Rv1 tumours in bone. No bone defects were detected in mice treated with docetaxel. These qualitative data will be followed in the future by quantitative micro-CT analysis as well as histology and histomorphometry analysis of already collected tissues. Nonetheless, these preliminary experiments highlight a potential role for PAR2 in prostate cancer growth in bone. In summary, in vitro studies have defined mechanisms regulating PAR2 activation, downstream signalling and trafficking and in vivo studies point to a potential role for this receptor in prostate cancer bone metastasis. The outcomes of this project are that a greater understanding of the biology of PAR2 may lead to the development of strategies to modulate the function of this receptor in disease.