930 resultados para Tactile sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The delicate anatomy of the ear require surgeons to use great care when operating on its internal structures. One example for such an intervention is the stapedectomy, where a small crook shaped piston is placed in the oval window of the cochlea and connected to the incus through crimping thus bypassing the diseased stapes. Performing the crimp process with the correct force is necessary since loose crimps poorly transmit sound whereas tight crimps will eventually result in necrosis of the incus. Clinically, demand is high to reproducibly conduct the crimp process through a precise force measurement. For this reason, we have developed a fiber Bragg grating (FBG) integrated microforceps for use in such interventions. This device was calibrated, and tested in cadaver preparations. With this instrument we were able to measure for the first time forces involved in crimping a stapes prosthesis to the incus. We also discuss a method of attaching and actuating such forceps in conjunction with a robot currently under development in our group. Each component of this system can be used separately or combined to improve surgical accuracy, confidence and outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatosensory object discrimination has been shown to involve widespread cortical and subcortical structures in both cerebral hemispheres. In this study we aimed to identify the networks involved in tactile object manipulation by principal component analysis (PCA) of individual subjects. We expected to find more than one network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electric power grids throughout the world suffer from serious inefficiencies associated with under-utilization due to demand patterns, engineering design and load following approaches in use today. These grids consume much of the world’s energy and represent a large carbon footprint. From material utilization perspectives significant hardware is manufactured and installed for this infrastructure often to be used at less than 20-40% of its operational capacity for most of its lifetime. These inefficiencies lead engineers to require additional grid support and conventional generation capacity additions when renewable technologies (such as solar and wind) and electric vehicles are to be added to the utility demand/supply mix. Using actual data from the PJM [PJM 2009] the work shows that consumer load management, real time price signals, sensors and intelligent demand/supply control offer a compelling path forward to increase the efficient utilization and carbon footprint reduction of the world’s grids. Underutilization factors from many distribution companies indicate that distribution feeders are often operated at only 70-80% of their peak capacity for a few hours per year, and on average are loaded to less than 30-40% of their capability. By creating strong societal connections between consumers and energy providers technology can radically change this situation. Intelligent deployment of smart sensors, smart electric vehicles, consumer-based load management technology very high saturations of intermittent renewable energy supplies can be effectively controlled and dispatched to increase the levels of utilization of existing utility distribution, substation, transmission, and generation equipment. The strengthening of these technology, society and consumer relationships requires rapid dissemination of knowledge (real time prices, costs & benefit sharing, demand response requirements) in order to incentivize behaviors that can increase the effective use of technological equipment that represents one of the largest capital assets modern society has created.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subject of this study is to investigate the capability of spaceborne remote sensing data to predict ground concentrations of PM10 over the European Alpine region using satellite derived Aerosol Optical Depth (AOD) from the geostationary Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the polar-orbiting MODerate resolution Imaging Spectroradiometer (MODIS). The spatial and temporal resolutions of these aerosol products (10 km and 2 measurements per day for MODIS, ∼ 25 km and observation intervals of 15 min for SEVIRI) permit an evaluation of PM estimation from space at different spatial and temporal scales. Different empirical linear relationships between coincident AOD and PM10 observations are evaluated at 13 ground-based PM measurement sites, with the assumption that aerosols are vertically homogeneously distributed below the planetary Boundary Layer Height (BLH). The BLH and Relative Humidity (RH) variability are assessed, as well as their impact on the parameterization. The BLH has a strong influence on the correlation of daily and hourly time series, whilst RH effects are less clear and smaller in magnitude. Despite its lower spatial resolution and AOD accuracy, SEVIRI shows higher correlations than MODIS (rSEV∼ 0.7, rMOD∼ 0.6) with regard to daily averaged PM10. Advantages from MODIS arise only at hourly time scales in mountainous locations but lower correlations were found for both sensors at this time scale (r∼ 0.45). Moreover, the fraction of days in 2008 with at least one satellite observation was 27% for SEVIRI and 17% for MODIS. These results suggest that the frequency of observations plays an important role in PM monitoring, while higher spatial resolution does not generally improve the PM estimation. Ground-based Sun Photometer (SP) measurements are used to validate the satellite-based AOD in the study region and to discuss the impact of aerosols' micro-physical properties in the empirical models. A lower error limit of 30 to 60% in the PM10 assessment from space is estimated in the study area as a result of AOD uncertainties, variability of aerosols properties and the heterogeneity of ground measurement sites. It is concluded that SEVIRI has a similar capacity to map PM as sensors on board polar-orbiting platforms, with the advantage of a higher number of observations. However, the accuracy represents a serious limitation to the applicability of satellites for ground PM mapping, especially in mountainous areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term osseoperception describes the capability of developing a subtle tactile sensibility over dental implants. The present clinical study aims at clarifying the question of how far tactile sensibility is to be attributed to the periodontium of the natural opposing tooth of the implant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The annexins are a multigene family of Ca(2+)- and charged phospholipid-binding proteins. Although they have been ascribed with diverse functions, there is no consensus about the role played by this family as a whole. We have mapped the Ca(2+)-induced translocations of four members of the annexin family and of two truncated annexins in live cells, and demonstrated that these proteins interact with the plasma membrane as well as with internal membrane systems in a highly coordinated manner. Annexin 2 was the most Ca(2+) sensitive of the studied proteins, followed by annexins 6, 4 and 1. The calcium sensitivity of annexin 2 increased further following co-expression with S100A10. Upon elevation of [Ca(2+)](i), annexins 2 and 6 translocated to the plasma membrane, whereas annexins 4 and 1 also became associated with intracellular membranes and the nuclear envelope. The NH(2)-terminus had a modulatory effect on plasma membrane binding: its truncation increased the Ca(2+) sensitivity of annexin 1, and decreased that of annexin 2. Given the fact that several annexins are present within any one cell, it is likely that they form a sophisticated [Ca(2+)] sensing system, with a regulatory influence on other signaling pathways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: The purpose of this randomized split-mouth clinical trial was to determine the active tactile sensibility between single-tooth implants and opposing natural teeth and to compare it with the tactile sensibility of pairs of natural teeth on the contralateral side in the same mouth (intraindividual comparison). MATERIAL AND METHODS: The hypothesis was that the active tactile sensibilities of the implant side and control side are equivalent. Sixty two subjects (n=36 from Bonn, n=26 from Bern) with single-tooth implants (22 anterior and 40 posterior dental implants) were asked to bite on narrow copper foil strips varying in thickness (5-200 microm) and to decide whether or not they were able to identify a foreign body between their teeth. Active tactile sensibility was defined as the 50% threshold of correct answers estimated by means of the Weibull distribution. RESULTS: The results obtained for the interocclusal perception sensibility differed between subjects far more than they differed between natural teeth and implants in the same individual [implant/natural tooth: 16.7+/-11.3 microm (0.6-53.1 microm); natural tooth/natural tooth: 14.3+/-10.6 microm (0.5-68.2 microm)]. The intraindividual differences only amounted to a mean value of 2.4+/-9.4 microm (-15.1 to 27.5 microm). The result of our statistical calculations showed that the active tactile sensibility of single-tooth implants, both in the anterior and posterior region of the mouth, in combination with a natural opposing tooth is similar to that of pairs of opposing natural teeth (double t-test, equivalence margin: +/-8 microm, P<0.001, power >80%). Hence, the implants could be integrated in the stomatognathic control circuit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: The aim of this study was to determine which of two clinically applied methods, electromyography or acceleromyography, was less affected by external disturbances, had a higher sensitivity and which would provide the better input signal for closed loop control of muscle relaxation. METHODS: In 14 adult patients, anaesthesia was induced with intravenous opioids and propofol. The response of the thumb to ulnar nerve stimulation was recorded on the same arm. Mivacurium was used for neuromuscular blockade. Under stable conditions of relaxation, the infusion-rate was decreased and the effects of turning the hand were investigated. RESULTS: Electromyography and acceleromyography both reflected the change of the infusion rate (P = 0.015 and P < 0.001, respectively). Electromyography was significantly less affected by the hand-turn (P = 0.008) than acceleromyography. While zero counts were detected with acceleromyography, electromyography could still detect at least one count in 51.1%. CONCLUSIONS: Electromyography is more reliable for use in daily practice as it is less influenced by external disturbances than acceleromyography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Though 3D computer graphics has seen tremendous advancement in the past two decades, most available mechanisms for computer interaction in 3D are high cost and targeted for industry and virtual reality applications. Recent advances in Micro-Electro-Mechanical-System (MEMS) devices have brought forth a variety of new low-cost, low-power, miniature sensors with high accuracy, which are well suited for hand-held devices. In this work a novel design for a 3D computer game controller using inertial sensors is proposed, and a prototype device based on this design is implemented. The design incorporates MEMS accelerometers and gyroscopes from Analog Devices to measure the three components of the acceleration and angular velocity. From these sensor readings, the position and orientation of the hand-held compartment can be calculated using numerical methods. The implemented prototype is utilizes a USB 2.0 compliant interface for power and communication with the host system. A Microchip dsPIC microcontroller is used in the design. This microcontroller integrates the analog to digital converters, the program memory flash, as well as the core processor, on a single integrated circuit. A PC running Microsoft Windows operating system is used as the host machine. Prototype firmware for the microcontroller is developed and tested to establish the communication between the design and the host, and perform the data acquisition and initial filtering of the sensor data. A PC front-end application with a graphical interface is developed to communicate with the device, and allow real-time visualization of the acquired data.