820 resultados para TITANIUM-DIOXIDE
Resumo:
Objetivo principal: Revisar en la literatura científica si existen problemas en la salud y cuáles son, en los trabajadores expuestos al dióxido de titanio. Métodos: Revisión sistemática de la literatura científica recogida en las bases de datos MEDLINE (PubMed), Cochrane Library Plus, LILACS, OSH UPDATE, Biblioteca de la Organización internacional del Trabajo (OIT), Web of Science, IBECS. Los términos utilizados como descriptores y texto libre fueron: MeSH (thesaurus desarrollado por la U. S. National Library of Medicine), considerándose adecuados "Titanium", "Ocupational Exposure" y "Ocupational Diseases". Resultados: Se recuperaron 61 artículos. Tras aplicar los criterios de inclusión y exclusión obteniéndose 14 artículos (4 estudios de cohortes, 3 estudios de casos y controles, 1 estudio observacional descriptivo transversal, 4 estudios de casos clínicos y 2 estudios de serie de casos). En los cuales la población estudiada fue masculina en aproximadamente 90%. Entre los trabajadores expuestos se encuentran: Pintores, albañiles, mecánicos y empleados encargados de la fabricación de joyería artificial, pintura, papel, lacas, barnices y productores de TiO2. Las patologías encontradas con mayor frecuencia fueron las alteraciones respiratorias, seguidas de alteraciones cardiovasculares, alteraciones genéticas por exposición a nanopartículas de TiO2. No se encontró asociación entre exposición al TiO2 y cáncer pulmonar. Tampoco se encontró evidencia del incremento de la mortalidad por exposición. Discusión/Conclusión: Con los estudios seleccionados, no se puede establecer una asociación significativa entre exposición laboral al TIO2 y efectos sobre la salud, pese a que se encuentran descritas alteraciones respiratorias, cardiovasculares y sistémicas en trabajadores expuestos.
Resumo:
The multiwall carbon nanotubes (MWCNTs)/titanium dioxide (P25) composite in different ratios was prepared using simple evaporation and drying process. The composite was characterized by Raman spectroscopy, X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy, and scanning electron microscopy (SEM). The photocatalytic activity of this composite was investigated using degradation of the Bismarck brown R dye (BBR). An optimal MWCNTs/TiO2 ratio of 0.5% (w/w) was found to achieve the maximum rate of BBR degradation. It was observed that the composite exhibits enhanced photocatalytic activity compared with TiO2. The enhancement in photocatalytic activity performance of the MWCNTs/P25 composite is explained in terms of recombination of photogenerated electron-hole pairs. In addition, MWCNTs act as a dispersing support to control the morphology of TiO2 particles in the MWCNTs/TiO2 composite.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) represent a large class of persistent organic pollutants in an environment of special concern because they have carcinogenic and mutagenic activity. In this paper, we focus on and discuss the effect of different parameters, for instance, initial concentration of Anthracene, temperature, and light intensity, on the degradation rate. These parameters were adjusted at pH 6.8 in the presence of the semiconductor materials (TiO2) as photocatalysts overUVlight. The main product of Anthracene photodegradation is 9,10-Anthraquinone which isidentified and compared with the standard compound by GC-MS. Our results indicate that the optimum conditions for the best rate of degradation are 25 ppm concentration of Anthracene, regulating the reaction vessel at 308.15 K and 2.5 mW/cm(2) of light intensity at 17 5mg/100 mL of titanium dioxide (P25).
Resumo:
Titania modified nanoparticles have been prepared by the photodeposition method employing platinum particles on the commercially available titanium dioxide (Hombikat UV 100). The properties of the prepared photocatalysts were investigated by means of the Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM), and UV-visible diffuse spectrophotometry (UV-Vis). XRD was employed to determine the crystallographic phase and particle size of both bare and platinised titanium dioxide. The results indicated that the particle size was decreased with the increasing of platinum loading. AFM analysis showed that one particle consists of about 9 to 11 crystals. UV-vis absorbance analysis showed that the absorption edge shifted to longer wavelength for 0.5% Pt loading compared with bare titanium dioxide. The photocatalytic activity of pure and Pt-loaded TiO2 was investigated employing the photocatalytic oxidation and dehydrogenation of methanol. The results of the photocatalytic activity indicate that the platinized titanium dioxide samples are always more active than the corresponding bare TiO2 for both methanol oxidation and dehydrogenation processes. The loading with various platinum amounts resulted in a significant improvement of the photocatalytic activity of TiO2. This beneficial effect was attributed to an increased separation of the photogenerated electron-hole charge carriers.
Resumo:
The stability of Ag-TiO(2) photocatalysts was examined for the photocatalytic degradation of dichloroacetic acid (DCA) as a function of the recycling times. The photocatalytic activity was investigated by measuring the rate of H(+) ions released during the photodegradation of DCA and confirmed by measuring the total organic carbon removal. The photodegradation reactions were studied at pH 3 and pH 10 for a series of Ag-TiO(2) photocatalysts as different with Ag loadings. All the Ag-TiO(2) and bare TiO(2) photocatalysts showed a decrease in photocatalytic activity on recycling for the DCA photodegradation reaction. The decrease in activity can be attributed to poisoning of active sites by Cl(-) anions formed during the photocatalytic DCA degradation. The photocatalytic activity was, however, easily recovered by a simple washing technique. The reversibility of the poisoning is taken as evidence to support the idea that the recycling of Ag-P25 TiO(2) photocatalysts does not have a permanent negative effect on their photocatalytic performance for the degradation of DCA. The choice of the preparation procedure for the Ag-TiO2 photocatalysts is shown to be of significant importance for the observed changes in the photocatalytic activity of the Ag-TiO2 particles. Copyright (C) 2008 Victor M. Menendez-Flores et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Resumo:
The production and use of synthetic nanoparticles is growing rapidly, and therefore the presence of these materials in the environment seems inevitable. Titanium dioxide (TiO2) presents various possible uses in industry, cosmetics, and even in the treatment of contaminated environments. Studies about the potential ecotoxicological risks of TiO2 nanoparticles (nano-TiO2) have been published but their results are still inconclusive. It should be noted that the properties of the diverse nano-TiO2 must be considered in order to establish experimental models to study their toxicity to environmentally relevant species. Moreover, the lack of descriptions and characterization of nanoparticles, as well as differences in the experimental conditions employed, have been a compromising factor in the comparison of results obtained in various studies. Therefore, the purpose of this paper is to make a simple review of the principal properties of TiO2, especially in nanoparticulate form, which should be considered in aquatic toxicology studies, and a compilation of the works that have been published on the subject.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.
Resumo:
Dissertação de Mestrado, Tecnologia dos Alimentos, Instituto Superior de Engenharia, Universidade do Algarve, 2014
Resumo:
Despite the recent synthesis and identification of a diverse set of new nanophotocatalysts that has exploded recently, titanium dioxide (TiO2) remains among the most promising photocatalysts because it is inexpensive, non-corrosive, environmentally friendly, and stable under a wide range of conditions. TiO2 has shown excellent promise for solar cell applications and for remediation of chemical pollutants and toxins. Over the past few decades, there has been a tremendous development of nanophotocatalysts for a variety of industrial applications (i.e. for water purification and reuse, disinfection of water matrices, air purification, deodorization, sterilization of soils). This paper details traditional and new industrial routes for the preparation of nanophotocatalysts and the characterization techniques used to understand the physical chemical properties of them, like surface area, ζ potential, crystal size, and phase crystallographic, morphology, and optical transparency. Finally we present some applications of the industrial nanophotocatalysts.
Resumo:
In recent decades have seen a sharp growth in the study area of nanoscience and nanotechnology and is included in this area, the study of nanocomposites with self-cleaning properties. Since titanium dioxide (TiO2) has high photocatalytic activity and also antimicrobial, self-cleaning surfaces in your application has been explored. In this study a comparison was made between two synthesis routes to obtain TiO2 nanoparticles by hydrothermal method assisted by microwave. And after analysis of XRD and SEM was considered the best material for use in nanocomposites. It was deposited nanocomposite film of poly (dimethyl siloxane) (PDMS) with 0.5, 1, 1.5 and 2% by weight of nanoparticles of titanium dioxide (TiO2) by the spraying method. The nanocomposite was diluted with hexane and the suspension was deposited onto glass substrate, followed by curing in an oven with forced air circulation. The photocatalytic activity of the nanocomposite impregnated with methylene blue was evaluated by UV- vis spectroscopy from the intensity variation of absorption main peak at 660nm with time of exposure to the UV chamber. Changes in the contact angle and microhardness were analyzed before and after UV aging test. The effect of ultraviolet radiation on the chemical structure of the PDMS matrix was evaluated by spectrophotometry Fourier transform infrared (FTIR).The results indicated that the addition of TiO2 nanoparticles in the coating PDMS gave high photocatalytic activity in the decomposition of methylene blue, an important characteristic for the development of self-cleaning coatings
Resumo:
In this work, with the aim to tackle several approaches towards sustainable chemistry, two reactions were studied: aerobic photo-oxidation of biomass derived 5-hydroxymethyl-2-furfural (HMF), and anaerobic photo-reforming of glycerol known as a by-product in biodiesel industry, towards production of chemicals and hydrogen. Solar-assisted reactions were performed by means of heterogeneous photocatalysis, in mild conditions such as atmospheric pressure, room temperature and water as a benign solvent. Titanium dioxide (lab-synthesized and commercial) was used as a photo-active catalyst, which surface was modified by introducing different metal (e.g. Au, Au-Cu, Pt) and metal oxide (e.g. NiO) nanoparticles. The prepared materials were characterized by XRD, DRS, BET, TEM, SEM, RAMAN and other techniques. The influence of the support, the size and type of the deposited metal and metal oxide nanoparticles on the photo-catalytic transformation of HMF and glycerol was evaluated. In the case of HMF, the influence of the base addition and the oxygen content on the reaction selectivity was also studied. The effect of the crystalline phase composition and morphology of TiO2 in the glycerol photo-reforming reaction was assessed as well. The surface of the synthesized TiO2 nano-powders was investigated by means of Surface Organometallic Chemistry (SOMC) approach. In particular, the surface was characterized by chemical titration and DRIFT techniques. Furthermore, the SOMC concept allowed preparing of well-dispersed Pt nanoparticles on the TiO2 surface. The photo-catalytic activity of this sample in the glycerol photo-reforming process was tested and compared to that of other Pt-containing catalysts prepared by conventional technics. In view of avoiding the agglomeration and sedimentation of suspended titania powders in water media, thick films of synthesized and commercial TiO2 were deposited on a conductive substrate using screen-printing technique. The prepared electrodes were characterized by profilometry, SEM, XRD, optical, electrochemical and photo-electrochemical methods.
Resumo:
The quality of human life depends to a large degree on the availability of energy. In recent years, photovoltaic technology has been growing extraordinarily as a suitable source of energy, as a consequence of the increasing concern over the impact of fossil fuels on climate change. Developing affordable and highly efficiently photovoltaic technologies is the ultimate goal in this direction. Dye-sensitized solar cells (DSSCs) offer an efficient and easily implementing technology for future energy supply. Compared to conventional silicon solar cells, they provide comparable power conversion efficiency at low material and manufacturing costs. In addition, DSSCs are able to harvest low-intensity light in diffuse illumination conditions and then represent one of the most promising alternatives to the traditional photovoltaic technology, even more when trying to move towards flexible and transparent portable devices. Among these, considering the increasing demand of modern electronics for small, portable and wearable integrated optoelectronic devices, Fibre Dye-Sensitized Solar Cells (FDSSCs) have gained increasing interest as suitable energy provision systems for the development of the next-generation of smart products, namely “electronic textiles” or “e-textiles”. In this thesis, several key parameters towards the optimization of FDSSCs based on inexpensive and abundant TiO2 as photoanode and a new innovative fully organic sensitizer were studied. In particular, the effect of various FDSSCs components on the device properties pertaining to the cell architecture in terms of photoanode oxide layer thickness, electrolytic system, cell length and electrodes substrates were examined. The photovoltaic performances of the as obtained FDSSCs were fully characterized. Finally, the metal part of the devices (wire substrate) was substituted with substrates suitable for the textile industry as a fundamental step towards commercial exploitation.
Resumo:
Conventional chromatographic columns are packed with porous beads by the universally employed slurry-packing method. The lack of precise control of the particle size distribution, shape and position inside the column have dramatic effects on the separation efficiency. In the first part the thesis an ordered, three-dimensional, pillar-array structure was designed by a CAD software. Several columns, characterized by different fluid distributors and bed length, were produced by a stereolithographic 3D printer and compared in terms of pressure drop and height equivalent to a theroretical plate (HETP). To prevent the release of unwanted substances and to provide a surface for immobilizing a ligand, pillars were coated with one or more of the following materials: titanium dioxide, nanofibrillated cellulose (NFC) and polystyrene. The external NFC layer was functionalized with Cibacron Blue and the dynamic binding capacity of the column was measured by performing three chromatographic cycles, using bovine serum albumin (BSA) as target molecule. The second part of the thesis deals with Covid-19 pandemic related research activities. In early 2020, due to the pandemic outbreak, surgical face masks became an essential non-pharmaceutical intervention to limit the spread. To address the consequent shortage and to support the reconversion of the Italian industry, in late March 2020 a multidisciplinary group of the University of Bologna created the first Italian laboratory able to perform all the tests required for the evaluation and certification of surgical masks. More than 1200 tests were performed on about 350 prototypes, according to the standard EN 14683:2019. The results were analyzed to define the best material properties and masks composition for the production of masks with excellent efficiency. To optimize the usage of surgical masks and to reduce their environmental burden, the variation of their performance over time of usage were investigated as to determine the maximum lifetime.
Resumo:
Objective: This in vitro study aimed to analyze the influence of carbon dioxide (CO(2)) laser irradiation on the efficacy of titanium tetrafluoride (TiF(4)) and amine fluoride (AmF) in protecting enamel and dentin against erosion. Methods: Bovine enamel and dentin samples were pretreated with carbon dioxide (CO(2)) laser irradiation only (group I), TiF(4) only (1% F, group II), CO(2) laser irradiation before (group III) or through (group IV) TiF(4) application, AmF only (1% F, group V), or CO(2) laser irradiation before (group VI) or through (group VII) AmF application. Controls remained untreated. Ten samples of each group were then subjected to an erosive demineralization and remineralization cycling for 5 days. Enamel and dentin loss were measured profilometrically after pretreatment, 4 cycles (1 day), and 20 cycles (5 days) and statistically analyzed using analysis of variance and Scheffe's post hoc tests. Scanning electron microscopy (SEM) analysis was performed in pretreated but not cycled samples (two samples each group). Results: After 20 cycles, there was significantly less enamel loss in groups V and IV and significantly less dentin loss in group V only. All other groups were not significantly different from the controls. Lased surfaces (group I) appeared unchanged in the SEM images, although SEM images of enamel but not of dentin showed that CO(2) laser irradiation affected the formation of fluoride precipitates. Conclusion: AmF decreased enamel and dentin erosion, but CO(2) laser irradiation did not improve its efficacy. TiF(4) showed only a limited capacity to prevent erosion, but CO(2) laser irradiation significantly enhanced its ability to reduce enamel erosion.
Resumo:
OBJECTIVES Optical scanners combined with computer-aided design and computer-aided manufacturing (CAD/CAM) technology provide high accuracy in the fabrication of titanium (TIT) and zirconium dioxide (ZrO) bars. The aim of this study was to compare the precision of fit of CAD/CAM TIT bars produced with a photogrammetric and a laser scanner. METHODS Twenty rigid CAD/CAM bars were fabricated on one single edentulous master cast with 6 implants in the positions of the second premolars, canines and central incisors. A photogrammetric scanner (P) provided digitized data for TIT-P (n=5) while a laser scanner (L) was used for TIT-L (n=5). The control groups consisted of soldered gold bars (gold, n=5) and ZrO-P with similar bar design. Median vertical distance between implant and bar platforms from non-tightened implants (one-screw test) was calculated from mesial, buccal and distal scanning electron microscope measurements. RESULTS Vertical microgaps were not significantly different between TIT-P (median 16μm; 95% CI 10-27μm) and TIT-L (25μm; 13-32μm). Gold (49μm; 12-69μm) had higher values than TIT-P (p=0.001) and TIT-L (p=0.008), while ZrO-P (35μm; 17-55μm) exhibited higher values than TIT-P (p=0.023). Misfit values increased in all groups from implant position 23 (3 units) to 15 (10 units), while in gold and TIT-P values decreased from implant 11 toward the most distal implant 15. SIGNIFICANCE CAD/CAM titanium bars showed high precision of fit using photogrammetric and laser scanners. In comparison, the misfit of ZrO bars (CAM/CAM, photogrammetric scanner) and soldered gold bars was statistically higher but values were clinically acceptable.