976 resultados para THREADING DISLOCATION DENSITIES
Resumo:
Includes bibliographical references (p. 36-37).
Resumo:
Conducted in cooperation with California Dept. of Water Resources.
Resumo:
Senior thesis written for Oceanography 445
Resumo:
The core structure of a dislocation complex in SiGe/Si system composed of a perfect 60degrees dislocation and an extended 60 dislocation has been revealed at atomic level. This is attained by applying the image deconvolution technique in combination with dynamical diffraction effect correction to an image taken with a 200 kV field-emission high-resolution electron microscope. The possible configuration of the dislocation complex is analyzed and their Burgers vectors are determined. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Wurst is a protein threading program with an emphasis on high quality sequence to structure alignments (http://www.zbh.uni-hamburg.de/wurst). Submitted sequences are aligned to each of about 3000 templates with a conventional dynamic programming algorithm, but using a score function with sophisticated structure and sequence terms. The structure terms are a log-odds probability of sequence to structure fragment compatibility, obtained from a Bayesian classification procedure. A simplex optimization was used to optimize the sequence-based terms for the goal of alignment and model quality and to balance the sequence and structural contributions against each other. Both sequence and structural terms operate with sequence profiles.
Resumo:
Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.
Resumo:
Most of the common techniques for estimating conditional probability densities are inappropriate for applications involving periodic variables. In this paper we introduce three novel techniques for tackling such problems, and investigate their performance using synthetic data. We then apply these techniques to the problem of extracting the distribution of wind vector directions from radar scatterometer data gathered by a remote-sensing satellite.
Resumo:
We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ~0.5 µm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.
Resumo:
Евелина Илиева Велева - Разпределението на Уишарт се среща в практиката като разпределението на извадъчната ковариационна матрица за наблюдения над многомерно нормално разпределение. Изведени са някои маргинални плътности, получени чрез интегриране на плътността на Уишарт разпределението. Доказани са необходими и достатъчни условия за положителна определеност на една матрица, които дават нужните граници за интегрирането.
Resumo:
2000 Mathematics Subject Classification: 60F05, 60B10.
Resumo:
2000 Mathematics Subject Classification: 62H10.
Resumo:
2000 Mathematics Subject Classification: 65C05
Resumo:
2010 Mathematics Subject Classification: 62H10.