997 resultados para T-Lymphocytes, Helper-Inducer -- immunology
Resumo:
Studies on purified blood dendritic cells (DCs) are hampered by poor viability in tissue culture. We, therefore, attempted to study some of the interactions/relationships between DCs and other blood cells by culturing unseparated peripheral blood mononuclear cell (PBMC) preparations in vitro. Flow cytometric techniques were used to undertake a phenotypic and functional analysis of DCs within the cultured PBMC population. We discovered that both the CD11c(+) and CD11c(-) CD123(hi) DC subsets maintained their viability throughout the 3-day culture period, without the addition of exogenous cytokines. This viability was accompanied by progressive up-regulation of the surface costimulatory (CD40, CD80, CD86) and activation (CMRF-44, CMRF-56, CD83) molecules. The survival and apparent production of DCs in PBMC culture (without exogenous cytokines) and that of sorted DCs (with cytokines) were evaluated and compared by using TruCOUNT analysis. Absolute DC counts increased (for CD123hi and CD11c+ subsets) after overnight culture of PBMCs. Single-cell lineage depletion experiments demonstrated the rapid and spontaneous emergence of new in vitro generated DCs from CD14(+)/CD16(+) PBMC radioresistant precursors, additional to the preexisting ex vivo DC population. Unlike monocyte-derived DCs, blood DCs increased dextran uptake with culture and activation. Finally, DCs obtained after culture of PBMCs for 3 days were as effective as freshly isolated DCs in stimulating an allogeneic mixed leukocyte reaction. (C) 2002 by The American Society of Hematology.
Resumo:
Background and Objectives We have undertaken the first clinical trial involving the administration of alpha-GalactosylCeramine (alpha-GalCer)-pulsed dendritic cells (DCs) to human subjects, to determine safety, optimal dose, optimal administration route and immunological effects. Materials and Methods Subjects (n = 4) with metastatic malignancy received two infusions of alpha-GalCer-pulsed DCs intravenously, and two infusions intradermally. The percentages of Valpha24 Vbeta11 NKT cells in peripheral blood (PB) were determined by three-colour flow cytometry and the PB NKT cell numbers were calculated using the total number of PB lymphocytes/ml determined by automated full-blood counts. Results No serious treatment related adverse events were observed during the study period. Administration of alpha-GalCer-pulsed DCs in vivo can significantly (P < 0.03) increase PB Valpha24(+) Vbeta11(+) NKT cell numbers above pretreatment baseline levels after the transient fall in the NKT numbers within 48 h. Conclusions Administration of alpha-GalCer-pulsed DCs is well tolerated, modulates PB Valpha24(+) Vbeta11(+) NKT cells and may have a role in the therapy of malignancies sensitive to activities of Valpha24(+) Vbeta11(+) NKT cells, or for autoimmune diseases.
Resumo:
The BCR-ABL fusion proteins, b2a2 and b3a2, are potential targets for a beneficial graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation for chronic myeloid leukemia (CML). This study demonstrates that CD4(+) T cells specific to the b2a2 peptide can be generated from a normal allogeneic stem cell transplant donor after stimulation with monocyte-derived dendritic cells (Mo-DC) using culture conditions applicable to clinical use. Stimulation of donor T-cell enriched mononuclear cells (MNC) with b2a2-pulsed Mo-DC produced approximately 3 x 10(9) b2a2-specific CD4(+) T cells. The CD4(+) T cells were HLA-DR7 restricted. These results confirm that the generation of donor derived b2a2-specific T cells for clinical use is feasible and warrants clinical testing after stem cell transplantation.
Resumo:
Background: The response of hepatocellular carcinoma (HCC) to therapy is often disappointing and new modalities of treatment are clearly needed. Active immunotherapy based on the injection of autologous dendritic cells (DC) co-cultured ex vivo with tumor antigens has been used in pilot studies in various malignancies such as melanoma and lymphoma with encouraging results. Methods: In the present paper, the preparation and exposure of patient DC to autologous HCC antigens and re-injection in an attempt to elicit antitumor immune responses are described. Results: Therapy was given to two patients, one with hepatitis C and one with hepatitis B, who had large, multiple HCC and for whom no other therapy was available. No significant side-effects were observed. The clinical course was unchanged in one patient, who died a few months later. The other patient, whose initial prognosis was considered poor, is still alive and well more than 3 years later with evidence of slowing of tumor growth based on organ imaging. Conclusions: It is concluded that HCC may be a malignancy worthy of DC trials and sufficient details in the present paper are given for the protocol to be copied or modified. (C) 2002 Blackwell Publishing Asia Pty Ltd.
Resumo:
The MUC1 mucin (CD227) is a cell surface mucin originally thought to be restricted to epithelial tissues. We report that CD227 is expressed on human blood dendritic cells (DC) and monocyte-derived DC following in vitro activation. Freshly isolated murine splenic DC had very low levels of CD227; however, all DC expressed CD227 following in vitro culture. In the mouse spleen, CD227 was seen on clusters within the red pulp and surrounding the marginal zone in the white pulp. Additionally, we confirm CD227 expression by activated human T cells and show for the first time that the CD227 cytoplasmic domain is tyrosine-phosphorylated in activated T cells and DC and is associated with other phosphoproteins, indicating a role in signaling. The function of CD227 on DC and T cells requires further elucidation.
Resumo:
Mucosal presentation of Actinomyces viscosus results in antigen-specific systemic immune suppression, known as oral tolerance. The aim of the present study was to determine the mechanism by which this oral tolerance is induced. DBA/2 mice were gastrically immunized with A. viscosus. Serum, Peyer's patch (PP) and spleen cells were transferred to syngeneic recipients which were then systemically challenged with the sameiA. viscosus strain. To determine antigen-specificity of cells from gastrically immunized mice, recipients which received immune spleen cells were also challenged with Porphyromonas gingivalis. One week after the last systemic challenge, the delayed type hypersensitivity (DTH) response was determined by footpad swelling and the level of serum IgG, IgA and IgM antibodies to A. viscosus or P. gingivalis measured by an ELISA. No suppression of DTH response or of specific serum antibodies was found in recipients which received serum from gastrically immunized mice. Systemic immune suppression to A. viscosus was observed in recipients which had been transferred with PP cells obtained 2 days but not 4 and 6 days after gastric immunization with A. viscosus. Conversely, suppressed immune response could be seen in recipients transferred with spleen cells obtained 6 days after gastric immunization. The immune response to P. gingivalis remained unaltered in mice transferred with A. viscosus-gastrically immunized cells. The results of the present study suggest that oral tolerance induced by A. viscosus may be mediated by antigen-specific suppressor cells which originate in the PP and then migrate to the spleen.
Resumo:
The Kunjin replicon was used to express a polytope that consisted of seven hepatitis C virus cytotoxic T lymphocyte epitopes and one influenza cytotoxic T lymphocyte epitope for vaccination studies. The self-replicating nature of, and expression from, the ribonucleic acid was confirmed in vitro . Initial vaccinations with one dose of Kun-Poly ribonucleic acid showed that an influenza-specific cytotoxic T lymphocyte response was elicited more efficiently by intradermal inoculation compared with intramuscular delivery. Two micrograms of ribonucleic acid delivered in the ear pinnae of mice was sufficient to elicit a detectable cytotoxic T lymphocyte response 10 days post-vaccination. Further vaccination studies showed that four of the seven hepatitis C virus cytotoxic T lymphocyte epitopes were able to elicit weak cytotoxic T lymphocyte responses whereas the influenza epitope was able to elicit strong, specific cytotoxic T lymphocyte responses following three doses of Kun-Poly ribonucleic acid. These studies vindicate the use of the Kunjin replicon as a vector to deliver encoded proteins for the development of cell-mediated immune responses.
Resumo:
Multiple HLA class I alleles can bind peptides with common sequence motifs due to structural similarities in the peptide binding cleft, and these groups of alleles have been classified into supertypes. Nine major HLA supertypes have been proposed, including an A24 supertype that includes A*2301, A*2402, and A*3001. Evidence for this A24 supertype is limited to HLA sequence homology and/or similarity in peptide binding motifs for the alleles. To investigate the immunological relevance of this proposed supertype, we have examined two viral epitopes (from EBV and CMV) initially defined as HLA-A*2301-binding peptides. The data clearly demonstrate that each peptide could be recognized by CTL clones in the context of A*2301 or A*2402; thus validating the inclusion of these three alleles within an A24 supertype. Furthermore, CTL responses to the EBV epitope were detectable in both A*2301(+) and A*2402(+) individuals who had been previously exposed to this virus. These data substantiate the biological relevance of the A24 supertype, and the identification of viral epitopes with the capacity to bind promiscuously across this supertype could aid efforts to develop CTL-based vaccines or immunotherapy. The degeneracy in HLA restriction displayed by some T cells in this study also suggests that the dogma of self-MHC restriction needs some refinement to accommodate foreign peptide recognition in the context of multiple supertype alleles.
Resumo:
Epstein-Barr virus (EBV)-encoded oncogene latent membrane protein (LMP) 1, which is consistently expressed in multiple EBV-associated malignancies, has been proposed as a potential target antigen for any future vaccine designed to control these malignancies. However, the high degree of genetic variation in the LMP1 sequence has been considered a major impediment for its use as a potential immunotherapeutic target for the treatment of EBV-associated malignancies. In the present study, we have employed a highly efficient strategy, based on ex vivo functional assays, to conduct an extensive sequence-wide analysis of LMP1-specific T-cell responses in a large panel of healthy virus carriers of diverse ethnic origin and nasopharyngeal carcinoma patients. By comparing the frequencies of T cells specific for overlapping peptides spanning LMP1, we mapped a number of novel HLA class I- and class II-restricted LMP1 T-cell epitopes, including an epitope with dual HLA class I restriction. More importantly, extensive sequence analysis of LMP1 revealed that the majority of the T-cell epitopes were highly conserved in EBV isolates from Caucasian, Papua New Guinean, African, and Southeast Asian populations, while unique geographically constrained genetic variation was observed within one HLA A2 supertype-restricted epitope. These findings indicate that conserved LMP1 epitopes should be considered in designing epitope-based immunotherapeutic strategies against EBV-associated malignancies in different ethnic populations.
Resumo:
The ability of viral or mutated cellular oncogenes to initiate neoplastic events and their poor immunogenicity have considerably undermined their potential use as immunotherapeutic tools for the treatment of human cancers. Using an EpsteinBarr virus-encoded oncogene, latent membrane protein 1 (LMP1), as a model, we report a novel strategy that both deactivates cellular signaling pathways associated with the oncogenic phenotype and reverses poor immunogenicity. We show that cotranslational ubiquitination combined with Wend rule targeting of LMP1 enhanced the intracellular degradation of LMP1 and total blockade of LMP1-mediated nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription (STAT) activation in human cells. In addition, although murine cells expressing LMP1 were uniformly tumorigenic, this oncogenicity was completely abrogated by covalent linkage of LMP1 with ubiquitin, while an enhanced CD8(+) T cell response to a model epitope fused to the C-terminus of LMP1 was observed following immunization with ubiquitinated LMP1. These observations suggest that proteasomal targeting of tumor-associated oncogenes could be exploited therapeutically by either gene therapy or vaccination.
Resumo:
Development of an epitope-based vaccination strategy designed to enhance Epstein-Barr virus (EBV)-specific CD8(+) cytotoxic T lymphocytes (CTLs) is increasingly being considered as a preferred approach for the treatment of EBV-associated relapsed Hodgkin disease (HD) and nasopharyngeal carcinoma (NPC). EBV-encoded latent membrane proteins, LMP1 and LMP2, are the only target antigens available for therapeutic augmentation of CTL responses in patients with HD and NPC. Here, we describe preclinical studies using a recombinant poxvirus vaccine that encodes a polyepitope protein comprising 6 HLA A2-restricted epitopes derived from LMP1. Human cells infected with this recombinant polyepitope construct were efficiently recognized by LM1-specific CTL lines from HLAA2 healthy individuals. Furthermore, immunization of HLrA A2/K-b mice with this polyepitope vaccine consistently generated strong LMP1 -specific CTL responses to 5 of the. 6 epitopes, which were readily detected by both ex vivo and in vitro assays. More important, this polyepitope vaccine successfully reversed the outgrowth of LMP1-expressing tumors in HLA A2/Kb mice. These studies provide an important platform for the development of an LMP-based polyepitope vaccine as an immunotherapeutic tool for the treatment of EBV-associated HD and NPC. (C) 2003 by The American Society of Hematology.
Resumo:
The Epstein-Barr virus latent membrane protein (LMP 1) functions as a constitutively active signalling molecule and associates in lipid rafts clustered with other signalling molecules. Using immunofluorescent confocal microscopy, LMP 1 was shown to have an heterogeneous distribution among individual cells which was not related to the cell cycle stage. LMP 1 was shown to localize to intracellular compartments in cells other than the plasma membrane, Co-labelling of cells with both an LIMP 1 antibody and an antibody to the Golgi protein GS15 revealed that the intracellular LMP 1 partly co-localized with the Golgi apparatus. Further confirmation of intracellular LMP 1 localization was obtained by immunoelectron microscopy with rabbit polyclonal LIMP 1 antibodies and cryosectioning. As well as being present in intracellular foci, LMP 1 co-localized in part with MHC-II and was present on exosomes derived from a lymphoblastoid cell line. Preparations of LMP 1 containing exosomes were shown to inhibit the proliferation of peripheral blood mononuclear cells, suggesting that LIMP 1 could be involved in immune regulation. This may be of particular relevance in EBV-associated tumours such as nasopharyngeal carcinoma and Hodgkin's disease, as LMP 1-containing exosomes may be taken up by infiltrating T-lymphocytes, where LMP 1 could exert an anti-proliferative effect, allowing the tumour cells to evade the immune system.
Resumo:
Purpose: The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on T-cell number and function, and to determine the role of a mixed type, moderate intensity exercise program in facilitating the recovery of T-cell number and function. Methods: Immunological measures of white blood cell, lymphocyte, CD3(+), CD4(+), and CD8(+) counts, and CD3(+) cell function were assessed pretransplant (PI), immediately posttransplant (PII), and 1 month (II), 2 months (12) and 3 months (PIII) posttransplant. After PII, 12 patients were divided equally into a control group (CG) or exercise intervention group (EG). Results: Lower total T-cell, helper T-cell, and suppressor T-cell counts (P < 0.01), as well as lower T-cell function (P < 0.01), when compared with normative data, were found at PI. More specifically, 88% of the group had CD3(+), CD4(+), and CD8(+) counts that were more than 40%, 20%, and 50% below normal at PI, respectively. Undertaking a PBST caused further adverse changes to the total leukocyte, lymphocyte, CD3(+), CD4(+) and CD8(+) count. and the helper/suppressor ratio. Although CD8(+) counts had returned to normal by PIII, CD3(+), CD4(+), and the CD4(+)/CD8(+) ratio remained significantly lower than normative data (P < 0.01), with 66%, 100%, and 100% of the subject group reporting counts and ratios, respectively, below the normal range. Conclusion: The PBST patients were immunocompromised before undertaking the transplant, and the transplant procedure imposed further adverse changes to the leukocyte and lymphocyte counts. The leukocyte and CD8(+) counts returned to normal within 3 months posttransplant; however, the other immunological parameters assessed demonstrated a delayed recovery. Although participation in the exercise program did not facilitate a faster immune cell recovery, neither did the exercise program hinder or delay recovery.
Resumo:
Early pregnancy factor (EPF) is a secreted protein with immunosuppressive and growth factor properties that has been shown to suppress acute experimental autoimmune encephalomyelitis (EAE) induced with myelin basic protein (MBP) in Lewis rats. EAE is associated with infiltration of the central nervous system (CNS) with inflammatory cells. Spontaneous recovery involves the loss of T lymphocytes from the CNS and the selective apoptosis of Vbeta8.2(+) cells. In the present study, T cell, macrophage (CD11b/c(+)) and B cell (CD45RA(+)) populations in spinal cord and popliteal lymph nodes (LN) of Lewis rats with EAE were quantitated and apoptosis was studied. Rats were treated with EPF or vehicle. Following treatment on day 14 after inoculation with MBP, neither 1 x 100 mug nor 2 x 100 mug doses of EPF affected the total number of cells infiltrating the spinal cord on day 15, although the higher dose caused a decrease in the number of CD5(+) and CD11b/c(+) cells. Treatment with 2 x 100 mug/day from days 10 to 14 decreased the total number of infiltrating cells, and the numbers of CD5(+), CD11b/c(+) and CD45RA(+) cells. Apoptosis was unaffected. No alteration on the number or type of inflammatory cells in the popliteal LN was observed after treatment on days 10-14. However, treatment with EPF from days 0 to 11 increased the total number of T and B cells and CD5(+) T cells found on day 12 in the LN. Similarly, there was an increase in the frequency of MBP-reactive cells in the LN as determined by limiting dilution analysis. These results suggest that EPF treatment reduces the numbers of lymphocytes and macrophages in the CNS, possibly through an effect on cell trafficking. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
CD40 has emerged as a key signaling pathway for the function of B cells, monocytes, and dendritic cells (DC) in the immune system, and plays a major role in inflammatory pathways of nonhemopoletic cells. CD40 is expressed by monocytes and DC and is up-regulated when DC migrate from the periphery to draining lymph nodes (DLN) in response to microbial challenge. CD154 signaling by MHC-restricted, activated CD4* T cells induces differentiation of DC, as defined by an increased surface expression of MHC, costimulatory, and adhesion molecules. Thus, CD40 functions in the adaptive immune response as a trigger for the expression of costimulatory molecules for efficient T-cell activation. CD40 ligation of DC also has the capacity to induce high levels of the cytokine IL-12, which polarizes CD4(+) T cells toward a T helper 1 (Th1) type, enhances proliferation of CD8(+) T cells, and activates NK cells. CD40 may also play an important role in the decision between tolerance and immunity and the generation of regulatory CD4(+) T cells that are thought to maintain peripheral self-tolerance in vivo.