891 resultados para Switch allocation
Resumo:
A novel mechanical method of achieving a rapid switch between stoichiometric and lean conditions for SI engines is explored. Two and three throttle configurations, a switch strategy which employs a standard intake manifold and an assembly of pipes and throttle(s), are investigated numerically by using a one-dimensional engine simulation program based on the method of characteristics. The results indicate that it is possible to achieve rapid AFR switch without a torque jump, i.e. unperceptible to the driver. © 1998 Society of Automotive Engineers, Inc.
Resumo:
We use the qualitative insight of a planar neuronal phase portrait to detect an excitability switch in arbitrary conductance-based models from a simple mathematical condition. The condition expresses a balance between ion channels that provide a negative feedback at resting potential (restorative channels) and those that provide a positive feedback at resting potential (regenerative channels). Geometrically, the condition imposes a transcritical bifurcation that rules the switch of excitability through the variation of a single physiological parameter. Our analysis of six different published conductance based models always finds the transcritical bifurcation and the associated switch in excitability, which suggests that the mathematical predictions have a physiological relevance and that a same regulatory mechanism is potentially involved in the excitability and signaling of many neurons. © 2013 Franci et al.
Resumo:
A scalable monolithically integrated photonic space switch is proposed which uses a combination of Mach-Zehnder modulators and semiconductor optical amplifiers (SOAs) for improved crosstalk performance and reduced switch loss. This architecture enables the design of high-capacity, high-speed, large-port count, low-energy switches. Extremely low crosstalk of better than -50 dB can be achieved using a 2 × 2 dilated hybrid switch module. A 'building block' approach is applied to make large port count optical switches possible. Detailed physical layer multiwavelength simulations are used to investigate the viability of a 64 × 64 port switch. Optical signal degradation is estimated as a function of switch size and waveguide induced crosstalk. A comparison between hybrid and SOA switching fabrics highlights the power-efficient, high-performance nature of the hybrid switch design, which consumes less than one-third of the energy of an equivalent SOA-based switch. The significantly reduced impairments resulting from this switch design enable scaling of the port count, compared to conventional SOA-based switches. © 1983-2012 IEEE.
Resumo:
A hybrid crosspoint switch combining MZI and SOA components is proposed, which for a 2×2 port switch primitive implementation e×hibits crosstalk of -46dB. This architecture makes port count up to 64×64 feasible. © OSA 2013.
Resumo:
A multi-functional 1 × 9 wavelength selective switch based on liquid crystal on silicon (LCOS) spatial light modulator technology and anamorphic optics was tested at a channel spacing of 100 and 200 GHz, including dynamic data measurements on both single beam deflection and multi-casting to two ports. The multi-casting holograms were optimized using a modified Gerchberg-Saxton routine to design the core hologram, followed by a simulated annealing routine to reduce crosstalk at non-switched ports. The effect of clamping the magnitude of phase changes between neighboring pixels during optimization was investigated, with experimental results for multi-casting to two ports resulting in a signal insertion loss of-7.6 dB normalized to single port deflection, a uniformity of ±0.6%, and a worst case crosstalk of-19.4 dB, which can all be improved further by using a better anti-reflection coating on the LCOS SLM coverplate and other measures. © 2013 IEEE.
Resumo:
In this work we show dipole-assisted photogated switching by covalent grafting of photoactive molecules to conducting polymers. Photochromic spiropyran molecules were covalently attached to polyaniline (PANI) nanowires via N-alkylation reaction to the quinoic part of PANI. Upon irradiation with ultraviolet light spiropyran transformed to a large dipole containing molecule, merocyanine form. We show that this transformation leads to a substantial (ca. 2 orders of magnitude) increase in conductance of the photochromic PANI nanowires, which were evident by an increase in field-effect mobility and calculated band gap narrowing of the system. Finally, this transformation was found to be fully reversible with no significant photofatigue. © 2011 American Chemical Society.
Resumo:
A multicasting fiber optic switch employing a liquid crystal on silicon spatial light modulator is used to demonstrate wavefront encoding, a novel technique for crosstalk mitigation. Experimentally we reduce worst case crosstalk by 7.5dB. © 2012 OSA.
Resumo:
A high efficiency hard switching constant current LED driver is presented with high overall efficiency, high current precision, high LED efficacy, flicker-free and wide constant current dimming ratio. The high stable lighting source provides the best solution for office light, reading light and LCD backlight. © 2013 IEEE.
Resumo:
A SPICE simulation model of a novel cascode switch that combines a high voltage normally-on silicon carbide (SiC) junction field effect transistor (JFET) with a low voltage enhancement-mode gallium nitride field effect transistor (eGaN FET) has been developed, with the aim of optimising cascode switching performance. The effect of gate resistance on stability and switching losses is investigated and optimum values chosen. The effects of stray inductance on cascode switching performance are considered and the benefits of low inductance packaging discussed. The use of a positive JFET gate bias in a cascode switch is shown to reduce switching losses as well as reducing on-state losses. The findings of the simulation are used to produce a list of priorities for the design and layout of wide-bandgap cascode switches, relevant to both SiC and GaN high voltage devices. © 2013 IEEE.
Resumo:
Optical switching functionality is demonstrated in PCB integrated multimode passive polymer waveguides using a localised liquid-crystal cladding structure. Waveguide switching contrast of 15 dB is achieved with only 0.5 dB of on-state excess loss. © 2009 OSA.
Resumo:
We report the first experimental demonstration of a monolithically integrated hybrid dilated 2×2 modular optical switch using Mach-Zehnder modulators as low-loss 1×2 switching elements and short semiconductor optical amplifiers to provide additional extinction and gain. An excellent 40 dB cross-talk/extinction ratio is recorded with data-modulated signal-to-noise ratios of up to 44 dB in a 0.1 nm bandwidth. A switching time of 3 ns is demonstrated. Bit error rate studies show extremely low subsystem penalties of less than 0.1 dB, and studies indicate that, by using this hybrid switch building block, an 8×8 port switch could be achieved with 14 dB input power dynamic range for subsystem penalties of less than 0.5 dB.
Resumo:
The control plane is implemented for the first time to allow scheduling and power leveling in a monolithic 8×8 space and wavelength selective cross-connect. 16 dynamic data connections are established within 16μs. © 2013 Optical Society of America.
Resumo:
We propose a low latency optical data center top of rack switch using recirculation buffering and a hybrid MZ/SOA switch architecture to reduce the network power dissipated on future optically connected server chips by 53%. © OSA 2014.