886 resultados para Sustainable Urban Planning and Development
Resumo:
This paper explores the urban planning legacy left by Mrs Thatcher. To what extent has Mr Major continued with her approach? Has he developed new directions? This broad question provides the background for an examination of the changes to the planning system since Mrs Thatcher left office. The main themes covered are the new plan-led emphasis, the increase in the coverage of environmental issues, the question of whether a more people oriented perspective has developed with Major's softer touch and the Citizen's Charter and the property-led approach to urban regeneration. The paper concludes that although the contradictions of Thatcherism have led to the relaxation of certain ideological stances to planning, the central themes of Thatcherism - individualism and centralisation - continue unabated.
Resumo:
Cities may be responsible for up to 70% of global carbon emissions and 75% of global energy consumption and by 2050 it is estimated that 70% of the world's population could live in cities. The critical challenge for contemporary urbanism, therefore, is to understand how to develop the knowledge, capacity and capability for public agencies, the private sector and multiple users in city regions systemically to re-engineer their built environment and urban infrastructure in response to climate change and resource constraints. Re-Engineering the City 2020–2050: Urban Foresight and Transition Management (Retrofit 2050) is a major new interdisciplinary project funded under the Engineering and Physical Science Research Council's (EPSRC) Sustainable Urban Environments Programme which seeks to address this challenge. This briefing describes the background and conceptual framing of Retrofit 2050 project, its aims and objectives and research approach.
Resumo:
To bridge the gaps between traditional mesoscale modelling and microscale modelling, the National Center for Atmospheric Research, in collaboration with other agencies and research groups, has developed an integrated urban modelling system coupled to the weather research and forecasting (WRF) model as a community tool to address urban environmental issues. The core of this WRF/urban modelling system consists of the following: (1) three methods with different degrees of freedom to parameterize urban surface processes, ranging from a simple bulk parameterization to a sophisticated multi-layer urban canopy model with an indoor–outdoor exchange sub-model that directly interacts with the atmospheric boundary layer, (2) coupling to fine-scale computational fluid dynamic Reynolds-averaged Navier–Stokes and Large-Eddy simulation models for transport and dispersion (T&D) applications, (3) procedures to incorporate high-resolution urban land use, building morphology, and anthropogenic heating data using the National Urban Database and Access Portal Tool (NUDAPT), and (4) an urbanized high-resolution land data assimilation system. This paper provides an overview of this modelling system; addresses the daunting challenges of initializing the coupled WRF/urban model and of specifying the potentially vast number of parameters required to execute the WRF/urban model; explores the model sensitivity to these urban parameters; and evaluates the ability of WRF/urban to capture urban heat islands, complex boundary-layer structures aloft, and urban plume T&D for several major metropolitan regions. Recent applications of this modelling system illustrate its promising utility, as a regional climate-modelling tool, to investigate impacts of future urbanization on regional meteorological conditions and on air quality under future climate change scenarios. Copyright © 2010 Royal Meteorological Society
Resumo:
There has been an increased emphasis upon the application of science for humanitarian and development planning, decision-making and practice; particularly in the context of understanding, assessing and anticipating risk (e.g. HERR, 2011). However, there remains very little guidance for practitioners on how to integrate sciences they may have had little contact with in the past (e.g. climate). This has led to confusion as to which ‘science’ might be of use and how it would be best utilised. Furthermore, since this integration has stemmed from a need to be more predictive, agencies are struggling with the problems associated with uncertainty and probability. Whilst a range of expertise is required to build resilience, these guidelines focus solely upon the relevant data, information, knowledge, methods, principles and perspective which scientists can provide, that typically lie outside of current humanitarian and development approaches. Using checklists, real-life case studies and scenarios the full guidelines take practitioners through a five step approach to finding, understanding and applying science. This document provides a short summary of the five steps and some key lessons for integrating science.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is developed to include snow. The processes addressed include accumulation of snow on the different urban surface types: snow albedo and density aging, snow melting and re-freezing of meltwater. Individual model parameters are assessed and independently evaluated using long-term observations in the two cold climate cities of Helsinki and Montreal. Eddy covariance sensible and latent heat fluxes and snow depth observations are available for two sites in Montreal and one in Helsinki. Surface runoff from two catchments (24 and 45 ha) in Helsinki and snow properties (albedo and density) from two sites in Montreal are also analysed. As multiple observation sites with different land-cover characteristics are available in both cities, model development is conducted independent of evaluation. The developed model simulates snowmelt related runoff well (within 19% and 3% for the two catchments in Helsinki when there is snow on the ground), with the springtime peak estimated correctly. However, the observed runoff peaks tend to be smoother than the simulated ones, likely due to the water holding capacity of the catchments and the missing time lag between the catchment and the observation point in the model. For all three sites the model simulates the timing of the snow accumulation and melt events well, but underestimates the total snow depth by 18–20% in Helsinki and 29–33% in Montreal. The model is able to reproduce the diurnal pattern of net radiation and turbulent fluxes of sensible and latent heat during cold snow, melting snow and snow-free periods. The largest model uncertainties are related to the timing of the melting period and the parameterization of the snowmelt. The results show that the enhanced model can simulate correctly the exchange of energy and water in cold climate cities at sites with varying surface cover.
Resumo:
This paper proposes a rights-based approach for participatory urban planning for climate change adaptation in urban areas. Participatory urban planning ties climate change adaptation to local development opportunities. Previous discussions suggest that participatory urban planning may help to understand structural inequalities, to gain, even if temporally, institutional support and to deliver a planning process in constant negotiation with local actors. Building upon an action research project which implemented a process of participatory urban planning for climate change in Maputo, Mozambique, this paper reflects upon the practical lessons that emerged from these experiences, in relation to the incorporation of climate change information, the difficulties to secure continued support from local governments and the opportunities for local impacts through the implementation of the proposals emerging from this process.
Resumo:
The Surface Urban Energy and Water Balance Scheme (SUEWS) is evaluated at two locations in the UK: a dense urban site in the centre of London and a residential suburban site in Swindon. Eddy covariance observations of the turbulent fluxes are used to assess model performance over a twoyear period (2011-2013). The distinct characteristics of the sites mean their surface energy exchanges differ considerably. The model suggests the largest differences can be attributed to surface cover (notably the proportion of vegetated versus impervious area) and the additional energy supplied by human activities. SUEWS performs better in summer than winter, and better at the suburban site than the dense urban site. One reason for this is the bias towards suburban summer field campaigns in observational data used to parameterise this (and other) model(s). The suitability of model parameters (such as albedo, energy use and water use) for the UK sites is considered and, where appropriate, alternative values are suggested. An alternative parameterisation for the surface conductance is implemented, which permits greater soil moisture deficits before evaporation is restricted at non-irrigated sites. Accounting for seasonal variation in the estimation of storage heat flux is necessary to obtain realistic wintertime fluxes.