940 resultados para Surfactant
Resumo:
The aggregation behavior of the non-ionic surfactant Renex-100 in aqueous solutions and mesophases was evaluated by SAXS in a wide range of concentrations, between 20 and 30 °C. Complementary, water interactions were defined by DSC curves around 0°C. SAXS showed that the system undergoes the following phase transitions, from diluted to concentrated aqueous solutions: 1) isotropic solution of Renex aggregates; 2) hexagonal mesophase; 3) lamellar mesophase; and 4) isotropic solution. DSC analysis indicated the presence of interfacial water above 70wt%, which agreed with the segregation of free water to form the structural mesophases observed by SAXS bellow this concentration.
Resumo:
The use of biopolymers for the development of oxygen carriers has been extensively investigated. In this work, three different ABA triblock copolymers were synthesized and used to encapsulate purified bovine hemoglobin, using a double emulsion technique. The effect of polymer composition, homogenization velocity, and addition of a surfactant, on the protein entrapment was evaluated. These copolymers, which have a hydrophilic block, achieved higher values of encapsulation efficiency than the corresponding homopolymers. The increase in homogenization strength also promoted an increase in encapsulation efficiency. Capsules formation occurred even in the absence of PVA.
Resumo:
The use of fatty acids (FAs) as amphiphiles is very important because they have a behaving similar to surfactants. The formulation for the preferential partition of these species was studied by varying the amount of salt at constant acid concentration. As the salt concentration increases, a Winsor I→III→II transition is observed for all the systems studied. Furthermore, the electrolyte concentration required to obtain the optimum formulation varies inversely with the chain length of the acid. The partition coefficient of the surfactant allows one to obtain thermodynamic information on the acid transfer process between the phases of the system.
Resumo:
Lipid nanoemulsions have recently been proposed as parenteral delivery systems for poorly-soluble drugs. These systems consist of nanoscale oil/water dispersions stabilized by an appropriate surfactant system in which the drug is incorporated into the oil core and/or adsorbed at the interface. This article reviews technological aspects of such nanosystems, including their composition, preparation methods, and physicochemical properties. From this review, it was possible to identify five groups of nanoemulsions based on their composition. Biopharmaceutical aspects of formulations containing some commercially available drugs (diazepam, propofol, dexamethasone, etomidate, flurbiprofen and prostaglandin E1) were then discussed.
Resumo:
The dispersion of carbon nanotubes in water for their utilization in nanoscale devices is a challenging task. Comparative studies on interaction and dispersion of multi-wall carbon nanotubes (MWNT) using two different surfactants (sodium dodecyl sulfate, SDS, and polyoxyethylenesorbitanmonooleate, Tween 80) are presented. The interaction between carbon nanotubes and surfactants was studied by tensiometry, conductivimetry, and fluorimetry. The dispersions of MWNT in surfactants were characterized using a UV-vis spectrophotometer. For effective dispersion, the minimum weight ratio of MWNT to surfactant was 1:41 and 1:3 for SDS and Tween 80, respectively.
Resumo:
Omega-3 enriched partial acylglycerols are beneficial for human health. The aim of this study was to obtain monoacylglycerols (MAG) and diacylglycerols (DAG) by means of glycerolysis of fish oil catalyzed by a lipase from Rhizomucor miehei in the presence of food grade surfactants (Tween 65, 80 or 85). Glycerolysis was successful in the reaction media for all the tested surfactants, showing their potential for use as additives in such a system. The best results, however, were obtained for the reaction medium in the absence of surfactant whose peroxide value was the lowest after glycerolysis.
Resumo:
In this paper, thiosemicarbazones 4-N-cinnamoyl-thiosemicarbazone (CTSC), 4-N-(2'-methoxycinnamoyl)-thiosemicarbazone (MCTSC), and 4-N-(4'-hydroxy-3'-methoxybenzoyl)- thiosemicarbazone (HMBTSC) were solubilized in an oil-in-water (O/W) microemulsion system (ME_OCS), forming systems CTSC_ME_OCS, MCTSC_ME_OCS and HMBTSC_ME_OCS. The effectiveness of these systems in the process of inhibiting AISI 1020 carbon steel corrosion was evaluated in a saline solution (NaCl 0.5%), using a galvanostatic method. The tested thiosemicarbazones showed higher inhibitory effects (85.7% for CTSC_ME_OCS, 84.0% for MCTSC_ME_OCS, and 83.3% for HMBTSC_ME_OCS). The surfactant OCS (dissolved in H2O) and the ME_OCS system showed lower efficacies, with 71.0% for OCS and 74.0% for ME_OCS system.
Resumo:
The self-aggregation of pheophytin, a possible photosensitizer for Photodynamic Therapy, is solved by formulation in polymeric surfactant as P-123. The photosensitizer incorporation was found to be time dependent, exhibiting two steps: a partition at the micellar interface followed by an incorporation into the micelle core. The photodynamic efficiency of the formulation was tested by the bioassays against Artemia salina. In order to evaluate how the experimental parameters: pheophytin concentration, P-123 percentage and illumination time influenced the death of artemia, the factorial design 2³ was chosen. The illumination time was found to be the main factor contributing to the mortality of artemia.
Resumo:
A simple, sensitive and selective cloud point extraction procedure is described for the preconcentration and atomic absorption spectrometric determination of Zn2+ and Cd2+ ions in water and biological samples, after complexation with 3,3',3",3'"-tetraindolyl (terephthaloyl) dimethane (TTDM) in basic medium, using Triton X-114 as nonionic surfactant. Detection limits of 3.0 and 2.0 µg L-1 and quantification limits 10.0 and 7.0 µg L-1were obtained for Zn2+ and Cd2+ ions, respectively. Relative standard deviation was 2.9 and 3.3, and enrichment factors 23.9 and 25.6, for Zn2+ and Cd2+ ions, respectively. The method enabled determination of low levels of Zn2+ and Cd2+ ions in urine, blood serum and water samples.
Resumo:
A new cloud point extraction (CPE) method was developed for the separation and preconcentration of copper (II) prior to spectrophotometric analysis. For this purpose, 1-(2,4-dimethylphenyl) azonapthalen-2-ol (Sudan II) was used as a chelating agent and the solution pH was adjusted to 10.0 with borate buffer. Polyethylene glycol tert-octylphenyl ether (Triton X-114) was used as an extracting agent in the presence of sodium dodecylsulphate (SDS). After phase separation, based on the cloud point of the mixture, the surfactant-rich phase was diluted with acetone, and the enriched analyte was spectrophotometrically determined at 537 nm. The variables affecting CPE efficiency were optimized. The calibration curve was linear within the range 0.285-20 µg L-1 with a detection limit of 0.085 µg L-1. The method was successfully applied to the quantification of copper in different beverage samples.
Resumo:
The phase behavior of an alcohol polyethoxylated surfactant with decane and dodecane oil phase varying the water proportion from 5 to 90% to determine compositions in which the formation of liquid crystals and microemulsions ocurred was investigated. Pseudoternary phase diagrams were built to represent the regions of liquid crystals, biphases and microemulsions. Polarized light optical microscopy was used for the analysis and characterization of the separate phases. The micrographs obtained showed characteristics of hexagonal and lamellar phases of liquid crystal, isotropic phases, microemulsions and vesicles. This study is important to propose hypothesis regarding the factors determining the formation and stability of phases composed by surfactant/oil/water systems.
Resumo:
A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.
Resumo:
Phase transition and viscosity behavior of emulsified systems were studied after modifying their physicochemical formulation. Effects of concentration and nature of salts and n-alcohols, and water/oil relation on the rheological properties of emulsions were also studied. Pre-equilibrated systems were emulsified according to an agitation procedure, and the viscosity (cP) was measured at different shear rates ranging from 1 to 300 s-1. The phase behavior, as well as the emulsion type based on electrolytic conductivity, was observed. Several interpretations of the flow and viscosity curves of emulsions were made through the estimation of rheological parameters such as consistency index "k" and behavior index "n".
Resumo:
Glycerol, a co-product of biodiesel production, was used as a carbon source for the kinetics studies and production of biosurfactants by P. aeruginosa MSIC02. The highest fermentative parameters (Y PX = 3.04 g g-1; Y PS = 0.189 g g-1, P B = 31.94 mg L-1 h-1 and P X = 10.5 mg L-1 h-1) were obtained at concentrations of 0.4% (w/v) NaNO3 and 2% (w/v) glycerol. The rhamnolipid exhibited 80% of emulsification on kerosene, surface tension of 32.5 mN m-1, CMC = 28.2 mg L-1, C20 (concentration of surfactant in the bulk phase that produces a reduction of 20 dyn/cm in the surface tension of the solvent) = 0.99 mg L-1, Γm (surface concentration excess) = 2.4 x 10-26 mol Å-2 and S (surface area) = 70.4 Ų molecule-1 with solutions containing 10% NaCl. A mathematical model based on logistic equation was considered to representing the process. Model parameters were estimated by non-linear regression method. This approach was able to give a good description of the process.
Resumo:
In this manuscript, a BiVO4 semiconductor was synthesized by solution combustion synthesis using different fuels (Alanine, Glycine and Urea). Also, the Tween® 80 surfactant was added during synthesis. BiVO4 was characterized by XRD, SEM and diffuse reflectance spectroscopy. Photocatalytic activity was evaluated by the discoloration of methylene blue at 664 nm under UV-visible light irradiation. According to XRD, the monoclinic phase of BiVO4 was obtained for the samples. The smallest particle size and highest k obs value were observed for the BiVO4/alanine sample, which promoted greater demethylation of methylene blue.