905 resultados para Sudge recycling
Resumo:
Summary of Actions Towards Sustainable Outcomes Environmental Issues / Principal Impacts The increased growth of cities is intensifying its impact on people and the environment through: • increased use of energy for the heating and cooling of more buildings, leading to urban heat islands and more greenhouse gas emissions • increased amount of hard surfaces contributing to higher temperatures in cities and more stormwater runoff • degraded air quality and noise impact • reduced urban biodiversity • compromised health and general well-being of people Basic Strategies In many design situations boundaries and constraints limit the application of cutting EDGe actions. In these circumstances designers should at least consider the following: • Consider green roofs early in the design process in consultation with all stakeholders to enable maximised integration with building systems and to mitigate building cost (avoid constructing as a retrofit). • Design of the green roof as part of a building’s structural, mechanical and hydraulic systems could lead to structural efficiency, the ability to optimise cooling benefits and better integrated water recycling systems. • Inform the selection of the type of green roof by considering its function, for example designing for social activity, required maintenance/access regime, recycling of water or habitat regeneration or a combination of uses. • Evaluate existing surroundings to determine possible links to the natural environment and choice of vegetation for the green roof with availability of local plant supply and expertise. Cutting EDGe Strategies • Create green roofs to contribute positively to the environment through reduced urban heat island effect and building temperatures, to improved stormwater quality, increased natural habitats, provision of social spaces and opportunity for increased local food supply. • Maximise solar panel efficiency by incorporating with design of green roof. • Integrate multiple functions for a single green roof such as grey water recycling, food production, more bio-diverse plantings, air quality improvement and provision of delightful spaces for social interaction. Synergies & references • BEDP Environment Design Guide DES 53: Roof and Facade Gardens GEN 4: Positive Development – designing for Net Positive Impacts TEC 26: Living Walls - a way to green the built environment • Green Roofs Australia: www.greenroofs.wordpress.com • International Green Roof Association: www.igra-world.com • Green Roofs for Healthy Cities (USA): www.greenroofs.org • Centre for Urban Greenery and Ecology (Singapore): http://research.cuge.com.sg
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
This study investigates the antecedents to clothing disposal methods in two countries: Scotland and Australia. Increasing volumes of textiles are disposed of in landfill sites to the detriment of the environment. Extant research has identified the influences affecting an increased rate of purchasing and the trend to keep clothing for an ever shorter time. As such, it is imperative to examine the factors that affect consumers’ choice of clothing disposal method as limited research has been undertaken in this area of socially responsible consumption. The results of a survey administered to a sample of female consumers in the two countries identify antecedents of three forms of clothing disposal methods: selling through eBay or second-hand shops, giving away to family or friends or donating to charities. Findings show differences between the countries regarding clothing disposal behaviour. Nevertheless, general recycling behaviour was found to be the strongest predictor for donating to charities in both countries.
Resumo:
Voluminous (≥3·9 × 105 km3), prolonged (∼18 Myr) explosive silicic volcanism makes the mid-Tertiary Sierra Madre Occidental province of Mexico one of the largest intact silicic volcanic provinces known. Previous models have proposed an assimilation–fractional crystallization origin for the rhyolites involving closed-system fractional crystallization from crustally contaminated andesitic parental magmas, with <20% crustal contributions. The lack of isotopic variation among the lower crustal xenoliths inferred to represent the crustal contaminants and coeval Sierra Madre Occidental rhyolite and basaltic andesite to andesite volcanic rocks has constrained interpretations for larger crustal contributions. Here, we use zircon age populations as probes to assess crustal involvement in Sierra Madre Occidental silicic magmatism. Laser ablation-inductively coupled plasma-mass spectrometry analyses of zircons from rhyolitic ignimbrites from the northeastern and southwestern sectors of the province yield U–Pb ages that show significant age discrepancies of 1–4 Myr compared with previously determined K/Ar and 40Ar/39Ar ages from the same ignimbrites; the age differences are greater than the errors attributable to analytical uncertainty. Zircon xenocrysts with new overgrowths in the Late Eocene to earliest Oligocene rhyolite ignimbrites from the northeastern sector provide direct evidence for some involvement of Proterozoic crustal materials, and, potentially more importantly, the derivation of zircon from Mesozoic and Eocene age, isotopically primitive, subduction-related igneous basement. The youngest rhyolitic ignimbrites from the southwestern sector show even stronger evidence for inheritance in the age spectra, but lack old inherited zircon (i.e. Eocene or older). Instead, these Early Miocene ignimbrites are dominated by antecrystic zircons, representing >33 to ∼100% of the dated population; most antecrysts range in age between ∼20 and 32 Ma. A sub-population of the antecrystic zircons is chemically distinct in terms of their high U (>1000 ppm to 1·3 wt %) and heavy REE contents; these are not present in the Oligocene ignimbrites in the northeastern sector of the Sierra Madre Occidental. The combination of antecryst zircon U–Pb ages and chemistry suggests that much of the zircon in the youngest rhyolites was derived by remelting of partially molten to solidified igneous rocks formed during preceding phases of Sierra Madre Occidental volcanism. Strong Zr undersaturation, and estimations for very rapid dissolution rates of entrained zircons, preclude coeval mafic magmas being parental to the rhyolite magmas by a process of lower crustal assimilation followed by closed-system crystal fractionation as interpreted in previous studies of the Sierra Madre Occidental rhyolites. Mafic magmas were more probably important in providing a long-lived heat and material flux into the crust, resulting in the remelting and recycling of older crust and newly formed igneous materials related to Sierra Madre Occidental magmatism.
Resumo:
Abstract Opioid drugs, such as morphine, are among the most effective analgesics available. However, their utility for the treatment of chronic pain is limited by side effects including tolerance and dependence. Morphine acts primarily through the mu-opioid receptor (MOP-R) , which is also a target of endogenous opioids. However, unlike endogenous ligands, morphine fails to promote substantial receptor endocytosis both in vitro, and in vivo. Receptor endocytosis serves at least two important functions in signal transduction. First, desensitization and endocytosis act as an "off" switch by uncoupling receptors from G protein. Second, endocytosis functions as an "on" switch, resensitizing receptors by recycling them to the plasma membrane. Thus, both the off and on function of the MOP-R are altered in response to morphine compared to endogenous ligands. To examine whether the low degree of endocytosis induced by morphine contributes to tolerance and dependence, we generated a knockin mouse that expresses a mutant MOP-R that undergoes morphine-induced endocytosis. Morphine remains an excellent antinociceptive agent in these mice. Importantly, these mice display substantially reduced antinociceptive tolerance and physical dependence. These data suggest that opioid drugs with a pharmacological profile similar to morphine but the ability to promote endocytosis could provide analgesia while having a reduced liability for promoting tolerance and dependence
Resumo:
Office building retrofit projects face many challenges for on-site waste management. While the projects themselves have the potential for a significant level of reuse and recycling from decon-struction and demolition, their unique characteristics often prohibit direct application of existing waste management systems, which are typically based on managing waste generated through new material application in new build projects. Moreover, current waste management plans include no stimuli to involve Small and Medium Enterprises (SMEs) for on-site waste management. As SMEs carry out the majority of on-site work as subcontractors, their active involvements will result in more proactive approaches to waste management and enhance project delivery. This paper discusses the interim results of a continuing research aimed at engaging SMEs in the planning processes of waste management through the collaboration between subcontractors and main contractors of retrofitting projects. It introduces a conceptual model for SMEs to proactively plan and manage on-site waste generation for both deconstruction and construction stages, before traditional waste management plans by the main contractor come into place. The model also suggests a collaboration process between SMEs as subcontractors and large companies as the main contractor to improve the involvement and performance of SMEs in waste management of office building retrofit projects.
Resumo:
Sustainable living is high on the international agenda (Ginsberg & Frame, 2004; Sutton, 2004). If education is fundamental to global transformation towards sustainability, then schools are in strategic positions to facilitate this change. Over recent years, schools in Australia have become more active in encouraging sustainability with the implementation of programs such as Science Education for Sustainable Living (SESL) that focus on topics such as energy efficiency, recycling, enhancing biodiversity, protecting species, and managing resources. This paper reports on a government funded Australian School Innovation in Science, Technology and Mathematics (ASISTM) project titled “Integrating science, technology and mathematics for understanding sustainable living” in which teachers, preservice teachers and other science professionals worked collaboratively to plan and enact a range of SESL programs for primary school students. Participants in this study included: 6 teachers, 5 preservice teachers, 2 university partners, 2 scientists, 4 consultants, and over 250 primary students. The findings from this qualitative study revealed a need for: (1) professional development for understanding SESL, (2) procedures for establishing and implementing SESL, and (3) strategies to devise, implement and evaluate SESL units of work.
Resumo:
This paper uses the lens of life-cycle thinking to discuss recent developments in the Australian mass market fashion industry, and to explore the opportunities and barriers to implementing lifecycle thinking within mass market design processes. Life-cycle analysis is a quantitative tool used to assess the environmental impact of a material or product. However the underlying thinking of life-cycle analysis can also be employed more generally, enabling a designer to assess their processes and design decisions for sustainability. A fashion designer employing life cycle thinking would consider every stage in the life of a garment from fibre and textiles through to consumer use, to eventual disposal and beyond disposal to reuse and later disassembly for fibre recycling. Although life-cycle thinking is rarely considered in the design processes of the fast-paced, price-driven mass market, this paper explores its potential and suggests ways in which it could be implemented.
Resumo:
For the Australian fashion industry to move towards a more socially and environmentally ethical industry, change to existing processes would need to occur in all market levels. Change is particularly needed in the mass market, where larger volumes inevitably lead to greater environmental impact. Recent trends in eco fashion have waxed and waned, with only minor impact on the methodology of the mass market design process, with greenwashing and confusion of concepts being common problems. In the mass market, the product lifecycle begins in the design room and ends on the retail floor. A design process for sustainability necessarily expands this lifecycle, assessing the impact of every stage in the life of a fashion garment from the fibre and textiles through to consumer use, to eventual disposal and beyond disposal to fibre recycling and reuse or resale. However, how easy is it for designers to consider a wider view of the product lifecycle in their design process? How much autonomy do they have over their design process, and where do they believe their responsibility begins and ends for the garments they design? This paper will present some preliminary findings from interviews with designers in the Australian women’s wear mass market, revealing their concerns and views on the challenges of a sustainability for their industry.
Resumo:
Fast fashion retailing is leading consumers towards an increased rate of purchasing and the trend to keep clothing for an ever shorter time with the resulting rise in clothing disposal. The aim of this paper is to empirically explore antecedents of two methods of sustainable clothing disposal behaviour in two countries: donating to charities and giving away to family and friends. Using data from females located in Australia and Chile, the authors test the proposed model with structural equation modelling (SEM). The results of this study show that consumer recycling behaviour is a strong and direct driver of donating to charity. In addition, results find that consumer awareness of the environment and consumer age affect donating behaviour. The findings have value for fast fashion retailers, marketers, environmental activists, ecological researchers, charity institutions and public policy makers.
Resumo:
Water resources are known to contain radioactive materials, either from natural or anthropogenic sources. Treatment, including wastewater treatment, of water for drinking, domestic, agricultural and industrial purposes has the potential to concentrate radioactive materials. Inevitably concentrated radioactive material is discharged to the environment as a waste product, reused for soil conditioning, or perhaps recycled as a new potable water supply. This thesis, presented as a collection of peer reviewed scientific papers, explores a number of water / wastewater treatment applications, and the subsequent nature and potential impact of radioactive residues associated with water exploitation processes. The thesis draws together research outcomes for sites predominantly throughout Queensland, Australia, where it is recognised that there is a paucity of published data on the subject. This thesis contributes to current knowledge on the monitoring, assessment and potential for radiation exposure from radioactive residues associated with the water industry.
Resumo:
Demands for delivering high instantaneous power in a compressed form (pulse shape) have widely increased during recent decades. The flexible shapes with variable pulse specifications offered by pulsed power have made it a practical and effective supply method for an extensive range of applications. In particular, the release of basic subatomic particles (i.e. electron, proton and neutron) in an atom (ionization process) and the synthesizing of molecules to form ions or other molecules are among those reactions that necessitate large amount of instantaneous power. In addition to the decomposition process, there have recently been requests for pulsed power in other areas such as in the combination of molecules (i.e. fusion, material joining), gessoes radiations (i.e. electron beams, laser, and radar), explosions (i.e. concrete recycling), wastewater, exhausted gas, and material surface treatments. These pulses are widely employed in the silent discharge process in all types of materials (including gas, fluid and solid); in some cases, to form the plasma and consequently accelerate the associated process. Due to this fast growing demand for pulsed power in industrial and environmental applications, the exigency of having more efficient and flexible pulse modulators is now receiving greater consideration. Sensitive applications, such as plasma fusion and laser guns also require more precisely produced repetitive pulses with a higher quality. Many research studies are being conducted in different areas that need a flexible pulse modulator to vary pulse features to investigate the influence of these variations on the application. In addition, there is the need to prevent the waste of a considerable amount of energy caused by the arc phenomena that frequently occur after the plasma process. The control over power flow during the supply process is a critical skill that enables the pulse supply to halt the supply process at any stage. Different pulse modulators which utilise different accumulation techniques including Marx Generators (MG), Magnetic Pulse Compressors (MPC), Pulse Forming Networks (PFN) and Multistage Blumlein Lines (MBL) are currently employed to supply a wide range of applications. Gas/Magnetic switching technologies (such as spark gap and hydrogen thyratron) have conventionally been used as switching devices in pulse modulator structures because of their high voltage ratings and considerably low rising times. However, they also suffer from serious drawbacks such as, their low efficiency, reliability and repetition rate, and also their short life span. Being bulky, heavy and expensive are the other disadvantages associated with these devices. Recently developed solid-state switching technology is an appropriate substitution for these switching devices due to the benefits they bring to the pulse supplies. Besides being compact, efficient, reasonable and reliable, and having a long life span, their high frequency switching skill allows repetitive operation of pulsed power supply. The main concerns in using solid-state transistors are the voltage rating and the rising time of available switches that, in some cases, cannot satisfy the application’s requirements. However, there are several power electronics configurations and techniques that make solid-state utilisation feasible for high voltage pulse generation. Therefore, the design and development of novel methods and topologies with higher efficiency and flexibility for pulsed power generators have been considered as the main scope of this research work. This aim is pursued through several innovative proposals that can be classified under the following two principal objectives. • To innovate and develop novel solid-state based topologies for pulsed power generation • To improve available technologies that have the potential to accommodate solid-state technology by revising, reconfiguring and adjusting their structure and control algorithms. The quest to distinguish novel topologies for a proper pulsed power production was begun with a deep and through review of conventional pulse generators and useful power electronics topologies. As a result of this study, it appears that efficiency and flexibility are the most significant demands of plasma applications that have not been met by state-of-the-art methods. Many solid-state based configurations were considered and simulated in order to evaluate their potential to be utilised in the pulsed power area. Parts of this literature review are documented in Chapter 1 of this thesis. Current source topologies demonstrate valuable advantages in supplying the loads with capacitive characteristics such as plasma applications. To investigate the influence of switching transients associated with solid-state devices on rise time of pulses, simulation based studies have been undertaken. A variable current source is considered to pump different current levels to a capacitive load, and it was evident that dissimilar dv/dts are produced at the output. Thereby, transient effects on pulse rising time are denied regarding the evidence acquired from this examination. A detailed report of this study is given in Chapter 6 of this thesis. This study inspired the design of a solid-state based topology that take advantage of both current and voltage sources. A series of switch-resistor-capacitor units at the output splits the produced voltage to lower levels, so it can be shared by the switches. A smart but complicated switching strategy is also designed to discharge the residual energy after each supply cycle. To prevent reverse power flow and to reduce the complexity of the control algorithm in this system, the resistors in common paths of units are substituted with diode rectifiers (switch-diode-capacitor). This modification not only gives the feasibility of stopping the load supply process to the supplier at any stage (and consequently saving energy), but also enables the converter to operate in a two-stroke mode with asymmetrical capacitors. The components’ determination and exchanging energy calculations are accomplished with respect to application specifications and demands. Both topologies were simply modelled and simulation studies have been carried out with the simplified models. Experimental assessments were also executed on implemented hardware and the approaches verified the initial analysis. Reports on details of both converters are thoroughly discussed in Chapters 2 and 3 of the thesis. Conventional MGs have been recently modified to use solid-state transistors (i.e. Insulated gate bipolar transistors) instead of magnetic/gas switching devices. Resistive insulators previously used in their structures are substituted by diode rectifiers to adjust MGs for a proper voltage sharing. However, despite utilizing solid-state technology in MGs configurations, further design and control amendments can still be made to achieve an improved performance with fewer components. Considering a number of charging techniques, resonant phenomenon is adopted in a proposal to charge the capacitors. In addition to charging the capacitors at twice the input voltage, triggering switches at the moment at which the conducted current through switches is zero significantly reduces the switching losses. Another configuration is also introduced in this research for Marx topology based on commutation circuits that use a current source to charge the capacitors. According to this design, diode-capacitor units, each including two Marx stages, are connected in cascade through solid-state devices and aggregate the voltages across the capacitors to produce a high voltage pulse. The polarity of voltage across one capacitor in each unit is reversed in an intermediate mode by connecting the commutation circuit to the capacitor. The insulation of input side from load side is provided in this topology by disconnecting the load from the current source during the supply process. Furthermore, the number of required fast switching devices in both designs is reduced to half of the number used in a conventional MG; they are replaced with slower switches (such as Thyristors) that need simpler driving modules. In addition, the contributing switches in discharging paths are decreased to half; this decrease leads to a reduction in conduction losses. Associated models are simulated, and hardware tests are performed to verify the validity of proposed topologies. Chapters 4, 5 and 7 of the thesis present all relevant analysis and approaches according to these topologies.
Resumo:
The increasing stock of aging office buildings will see a significant growth in retrofitting projects in Australian capital cities. Stakeholders of refitting works will also need to take on the sustainability challenge and realize tangible outcomes through project delivery. Traditionally, decision making for aged buildings, when facing the alternatives, is typically economically driven and on ad hoc basis. This leads to the tendency to either delay refitting for as long as possible thus causing building conditions to deteriorate, or simply demolish and rebuild with unjust financial burden. The technologies involved are often limited to typical strip-clean and repartition with dry walls and office cubicles. Changing business operational patterns, the efficiency of office space, and the demand on improved workplace environment, will need more innovative and intelligent approaches to refurbishing office buildings. For example, such projects may need to respond to political, social, environmental and financial implications. There is a need for the total consideration of buildings structural assessment, modeling of operating and maintenance costs, new architectural and engineering designs that maximise the utility of the existing structure and resulting productivity improvement, specific construction management procedures including procurement methods, work flow and scheduling and occupational health and safety. Recycling potential and conformance to codes may be other major issues. This paper introduces examples of Australian research projects which provided a more holistic approach to the decision making of refurbishing office space, using appropriate building technologies and products, assessment of residual service life, floor space optimisation and project procurement in order to bring about sustainable outcomes. The paper also discusses a specific case study on critical factors that influence key building components for these projects and issues for integrated decision support when dealing with the refurbishment, and indeed the “re-life”, of office buildings.
Resumo:
A study of historic examples of buildings that were designed for disassembly reveals a number of important lessons in the technology employed. These lessons can inform designers such that they may better design for disassembly to attempt to increase the rates of reuse and recycling in the building industry.
Resumo:
Purpose With an increasingly ageing population and widespread acceptance of the need for sustainable development in Australia, the demand for green retirement villages is increasing. This paper aims to identify the critical issues to be considered by developers and practitioners when embarking on their first green residential retirement project in Australia. Design/methodology/approach In view of the lack of adequate historical data for quantitative analysis, a case study approach is employed to examine the successful delivery of green retirement villages. Face-to-face interviews and document analysis were conducted for data collection. Findings The findings of the study indicate that one of the major obstacles to the provision of affordable green retirement villages is the higher initial costs involved. However, positive aspects were identified, the most significant of which relate to: the innovative design of site and floor plans; adoption of thermally efficient building materials; orientation of windows; installation of water harvesting and recycling systems, water conservation fittings and appliances; and waste management during the construction stage. With the adoption of these measures, it is believed that sustainable retirement development can be achieved without significant additional capital costs. Practical implications The research findings serve as a guide for developers in decision making throughout the project life-cycle when introducing green features into the provision of affordable retirement accommodation. Originality/value This paper provides insights into the means by which affordable green residential retirement projects for aged people can be successfully completed.