981 resultados para Strong-Field Phenomena
Resumo:
The gradient force, as a function of position and velocity, is derived for a two-level atom interacting with a standing-wave laser field. Basing on optical Bloch equations, the numerical solutions for the gradient force f_(|_;n) (n = 0, 1, 2, 3, 4, ...) pointing in the direction of the transverse of the laser beam are given. It is shown the higher order gradient force plays important role at strong intensity (G = 64), the contribution of them can not be neglected.
Resumo:
Previous work has indicated the presence of collapsing and structured soils in the surface layers underlying Sana's, the capital of Yemen Republic. This study set out initially to define and, ultimately, to alleviate the problem by investigating the deformation behaviour of these soils through both field and laboratory programmes. The field programme was carried out in Sana'a while the laboratory work consisted of two parts, an initial phase at Sana's University carried out in parallel with the field programme on natural and treated soils and the major phase at Aston University carried out on natural, destructured and selected treated soils. The initial phase of the laboratory programme included classification, permeability, and single (collapsing) and double oedometer tests while the major phase, at Aston, was extended to also include extensive single and double oedometer tests, Scanning Electron Microscopy and Energy Dispersive Spectrum analysis. The mechanical tests were carried out on natural and destructed samples at both the in situ and soaked moisture conditions. The engineering characteristics of the natural intact, field-treated and laboratory destructured soils are reported, including their collapsing potentials which show them to be weakly bonded with nil to severe collapsing susceptibility. Flooding had no beneficial effect, with limited to moderate improvement being achieved by preloading and roller compaction, while major benefits were achieved from deep compaction. From these results a comparison between the soil response to the different treatments and general field remarks were presented. Laboratory destructuring reduced the stiffness of the soils while their compressibility was increasing. Their collapsing and destructuring mechanisms have been examined by studying the changes in structure accompanying these phenomena. Based on the test results for the intact and the laboratory destructured soils, a simplified framework has been developed to represent the collapsing and deformation behaviour at both the partially saturated and soaked states, and comments are given on its general applicability and limitations. It has been used to evaluate all the locations subjected to field treatment. It provided satisfactory results for the deformation behaviour of the soils destructed by field treatment. Finally attention is drawn to the design considerations together with the recommendations for the selection of potential improvement techniques to be used for foundation construction on the particular soils of the Sana's region.
Resumo:
When a ferromagnetic steel billet was heated by induction a large increase in the amplitude of longitudinal vibration frequently occurred as a result of resonance. This happened when a natural frequency of the bar coincided with twice the heating frequency or multiples thereof. The temperature at which resonance occurred depended on a number of factors including billet length and heating power. Resonance was most often observed when the surface temperature of the billet reached the Curie point. It is well established that magnetostrictive vibrations occur in a ferromagnetic material subjected to an alternating electromagnetic field, but existing data suggests that linear magnetostriction decreases towards the Curie point. Linear magnetostriction was measured in a sample of mild steel up to 800ºC using a high temperature strain gauge. The magnetostriction constant 100 was calculated assuming an average grain orientation in mild steel. The data was found to be comparable to that published for single crystals of iron. It was discovered that linear magnetostriction was responsible for resonance below 600ºC but not for temperatures near the Curie point. Other possible causes of resonance such as forces produced by the interaction between eddy currents and the alternating electromagnetic field, the alpha to gamma phase transformation and the existence of a thin ferromagnetic layer were investigated. None were found to account for resonance in bars of mild steel heated by induction. Experimental work relating to the induction heating of steel is compared to previous work on the subject of electromagnetic generation of ultrasound where a similar increase of the amplitude of longitudinal waves in steel is reported at the Curie point. It is concluded that the two phenomena are related as they show strong similarities.
Resumo:
Presentation Purpose:To determine methods of quantifying the sensitivity loss in the central 10o visual field in a cross section of patients at various stages of age-related macular degeneration (AMD). Methods:Standard and short-wavelength automated perimetry (SAP and SWAP) visual fields were collected using program 10-2 of the Humphrey Field Analyzer, in 44 eyes of 27 patients with AMD and 41 eyes of 22 normal subjects. Stereoscopic fundus photographs were graded by two independent observers and the stage of disease determined. Global indices were compared for their ability to delineate the normal visual field from early stages of AMD and to differentiate between stages. Results:Mean Deviation (MD) and Pattern Standard Deviation (PSD) varied significantly with stage of disease in SAP (both p<0.001) and SWAP (both p<0.001), but post-hoc analysis revealed overlap of functional values between stages. Global indices of focal loss, PSD and local spatial variability (LSV) were the most sensitive to detecting differences between normal subjects and early stage AMD patients, in SAP and SWAP, respectively. Overall, defects were confined to the central 5°. SWAP defects were consistently greater in depth and area than those in SAP. The most vulnerable region of the 10° field to sensitivity loss with increasing stage of AMD was the central 1°, in which the sensitivity decline was -4.8dB per stage in SAP and -4.9dB per stage in SWAP. Based on the pattern deviation defect maps, a severity index of AMD visual field loss was derived. Threshold variability was considerably increased in late stage AMD eyes. Conclusions:Global indices of focal loss were more sensitive to the detection of early stage AMD from normal. The sensitivity decline with advancing stage of AMD was greater in SWAP compared to SAP, however the trend was not strong across all stages of disease. The less commonly used index LSV represents relatively statistically unmanipulated summary measure of focal loss. A new severity index is described which is sensitive to visual field change in AMD, measures visual field defects on a continuous scale and may serve as a useful measure of functional change in AMD in longitudinal studies. Keywords: visual fields • age-related macular degeneration • perimetry
Resumo:
Presentation Purpose:To relate structural change to functional change in age-related macular degeneration (AMD) in a cross-sectional population using fundus imaging and the visual field status. Methods:10 degree standard and SWAP visual fields and other standard functional clinical measures were acquired in 44 eyes of 27 patients at various stages of AMD, as well as fundus photographs. Retro-mode SLO images were captured in a subset of 29 eyes of 19 of the patients. Drusen area, measured by automated drusen segmentation software (Smith et al. 2005) was correlated with visual field data. Visual field defect position was compared to the position of the imaged drusen and deposits using custom software. Results:The effect of AMD stage on drusen area within the 6000µm was significant (One-way ANOVA: F = 17.231, p < 0.001), however the trend was not strong across all stages. There were significant linear relationships between visual field parameters and drusen area. The mean deviation (MD) declined by 3.00dB and 3.92dB for each log % drusen area for standard perimetry and SWAP, respectively. The visual field parameters of focal loss displayed the strongest correlations with drusen area. The number of pattern deviation (PD) defects increased by 9.30 and 9.68 defects per log % drusen area for standard perimetry and SWAP, respectively. Weaker correlations were found between drusen area and visual acuity, contrast sensitivity, colour vision and reading speed. 72.6% of standard PD defects and 65.2% of SWAP PD defects coincided with retinal signs of AMD on fundus photography. 67.5% of standard PD defects and 69.7% of SWAP PD defects coincided with deposits on retro-mode images. Conclusions:Perimetry exhibited a stronger relationship with drusen area than other measures of visual function. The structure-function relationship between visual field parameters and drusen area was linear. Overall the indices of focal loss had a stronger correlation with drusen area in SWAP than in standard perimetry. Visual field defects had a high coincidence proportion with retinal manifestations of AMD.Smith R.T. et al. (2005) Arch Ophthalmol 123:200-206.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
The purpose of this thesis is twofold: to examine the validity of the rotating-field and cross-field theories of the single-phase induction motor when applied to a cage rotor machine; and to examine the extent to which skin effect is likely to modify the characteristics of a cage rotor machine. A mathematical analysis is presented for a single-phase induction motor in which the rotor parameters are modified by skin effect. Although this is based on the usual type of ideal machine, a new form of model rotor allows approximations for skin effect phenomena to be included as an integral part of the analysis. Performance equations appropriate to the rotating-field and cross-field theories are deduced, and the corresponding explanations for the steady-state mode of operation are critically examined. The evaluation of the winding currents and developed torque is simplified by the introduction of new dimensionless factors which are functions of the resistance/reactance ratios of the rotor and the speed. Tables of the factors are included for selected numerical values of the parameter ratios, and these are used to deduce typical operating characteristics for both cage and wound rotor machines. It is shown that a qualitative explanation of the mode of operation of a cage rotor machine is obtained from either theory; but the operating characteristics must be deduced from the performance equations of the rotating-field theory, because of the restrictions on the values of the rotor parameters imposed by skin effect.
Resumo:
We report on the effective side detection of radiation-mode out-coupling from blazed fiber Bragg gratings (BFBGs) fabricated in single-mode fiber (SMF) and multimode fiber (MMF). The far-field radiation power distribution from BFBGs have been measured achieving a high spatial-spectral resolution (0.17 mm/nm). We have also investigated comparatively the transmission-loss characteristics of BFBGs in both fiber types, fabricated using phase-mask and holographic inscription techniques. Our results reveal clearly that the radiation out-coupling from BFBGs is significantly stronger and spectrally more confined in MMF than in SMF.
Resumo:
The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion. © Copyright 2012 Sonia Boscolo and Christophe Finot.
Resumo:
2002 Mathematics Subject Classification: 65C05
Resumo:
Unique electrical and mechanical properties of single-walled carbon nanotubes (SWNTs) have made them one of the most promising candidates for next-generation nanoelectronics. Efficient utilization of the exceptional properties of SWNTs requires controlling their growth direction (e.g., vertical, horizontal) and morphologies (e.g., straight, junction, coiled). ^ In this dissertation, the catalytic effect on the branching of SWNTs, Y-shaped SWNTs (Y-SWNTs), was investigated. The formation of Y-shaped branches was found to be dependent on the composition of the catalysts. Easier carbide formers have a strong tendency to attach to the sidewall of SWNTs and thus enhance the degree of branching. Y-SWNTs based field-effect transistors (FETs) were fabricated and modulated by the metallic branch of the Y-SWNTs, exhibiting ambipolar characteristics at room temperature. A subthreshold swing of 700 mV/decade and an on/off ratio of 105 with a low off-state current of 10-13 A were obtained. The transport phenomena associated with Y- and cross-junction configurations reveals that the conduction mechanism in the SWNT junctions is governed by thermionic emission at T > 100 K and by tunneling at T < 100 K. ^ Furthermore, horizontally aligned SWNTs were synthesized by the controlled modification of external fields and forces. High performance carbon nanotube FETs and logic circuit were demonstrated utilizing the aligned SWNTs. It is found that the hysteresis in CNTFETs can be eliminated by removing absorbed water molecules on the CNT/SiO2 interface by vacuum annealing, hydrophobic surface treatment, and surface passivation. SWNT “serpentines” were synthesized by utilization of the interaction between drag force from gas flow and Van der Waals force with substrates. The curvature of bent SWNTs could be tailored by adjusting the gas flow rate, and changing the gas flow direction with respect to the step-edges on a single-crystal quartz substrate. Resistivity of bent SWNTs was observed to increase with curvature, which can be attributed to local deformations and possible chirality shift at curved part. ^ Our results show the successful synthesis of SWNTs having controllable morphologies and directionality. The capability of tailoring the electrical properties of SWNTs makes it possible to build an all-nanotube device by integrating SWNTs, having different functionalities, into complex circuits. ^
Resumo:
We tested the relative importance of top-down and bottom-up effects by experimentally evaluating the combined and separate effects of nutrient availability and grazer species composition on epiphyte communities and seagrass condition in Florida Bay. Although we succeeded in substantially enriching our experimental cylinders, as indicated by elevated nitrogen concentrations in epiphytes and seagrass leaves, we did not observe any major increases in epiphyte biomass or major loss of Thalassia testudinum by algal overgrowth. Additionally, we did not detect any strong grazer effects and found very few significant nutrient-grazer interactions. While this might suggest that there was no important differential response to nutrients by individual grazer species or by various combinations of grazers, our results were complicated by the lack of significant differences between control and grazer treatments, and as such, these results are best explained by the presence of unwanted amphipod grazers (mean = 471 ind. m–2) in the control cylinders. Our estimates of grazing rates and epiphyte productivities indicate that amphipods in the control cylinders could have lowered epiphyte biomass to the same level that the experimental grazers did, thus effectively transforming the control treatments into grazer treatments. If so, our experiments suggest that the effects of invertebrate grazing (and those of amphipods alone) were stronger than the effects of nutrient enrichment on epiphytic algae, and that it does not require a large density
Resumo:
Sociolinguists have documented the substrate influence of various languages on the formation of dialects in numerous ethnic-regional setting throughout the United States. This literature shows that while phonological and grammatical influences from other languages may be instantiated as durable dialect features, lexical phenomena often fade over time as ethnolinguistic communities assimilate with contiguous dialect groups. In preliminary investigations of emerging Miami Latino English, we have observed that lexical forms based on Spanish lexical forms are not only ubiquitous among the speech of the first generation Cuban Americans but also of the second. Examples, observed in field work, casual observation, and studied formally in an experimental context include the following: “get down from the car,” which derives from the Spanish equivalent, bajar del carro instead of “get out of the car”. The translation task administered to thirty-one participants showed a variety lexical phenomena are still maintained at equal or higher frequencies.
Resumo:
During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (∼200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR = 1.1 × 10^14/μ L_⨀, where μ is the magnification factor, likely ∼11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7–6), CO(6–5), CO(5–4) detected at IRAM and the CO(2–1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s^−1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H_2 conversion ratio, the H_2 mass is 5.8×10^11/μ M_⨀, of which one third is in a cool component. From the CI(^3P_2−^3 P_1) line we derive a C_I/H_2 number abundance of 6 × 10^−5 similar to that in other ULIRGs. The H_2O_p(2, 0, 2−1, 1, 1) line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) ∼ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.
Resumo:
The density of firn is an important property for monitoring and modeling the ice sheet as well as to model the pore close-off and thus to interpret ice core-based greenhouse gas records. One feature, which is still in debate, is the potential existence of an annual cycle of firn density in low-accumulation regions. Several studies describe or assume seasonally successive density layers, horizontally evenly distributed, as seen in radar data. On the other hand, high-resolution density measurements on firn cores in Antarctica and Greenland showed no clear seasonal cycle in the top few meters. A major caveat of most existing snow-pit and firn-core based studies is that they represent one vertical profile from a laterally heterogeneous density field. To overcome this, we created an extensive dataset of horizontal and vertical density data at Kohnen Station, Dronning Maud Land on the East Antarctic Plateau. We drilled and analyzed three 90 m long firn cores as well as 160 one meter long vertical profiles from two elongated snow trenches to obtain a two dimensional view of the density variations. The analysis of the 45 m wide and 1 m deep density fields reveals a seasonal cycle in density. However, the seasonality is overprinted by strong stratigraphic noise, making it invisible when analyzing single firn cores. Our density dataset extends the view from the local ice-core perspective to a hundred meter scale and thus supports linking spatially integrating methods such as radar and seismic studies to ice and firn cores.