892 resultados para Sports facilities -- Heating and ventilation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le traumatisme de la moelle épinière est à l’origine d’une inflammation locale importante caractérisée par l’augmentation massive des cellules inflammatoires et la présence de réactions oxydatives. Cette inflammation locale peut déclencher une réponse inflammatoire systémique par voie hématogène. Au niveau cervical, les lésions médullaires peuvent entraîner des faiblesses ou la paralysie des muscles respiratoires. Le patient, qui ne peut plus respirer de façon autonome, doit avoir recours à un support respiratoire. Bien que la ventilation mécanique soit la thérapie traditionnellement appliquée aux blessés médullaires souffrant d’insuffisance respiratoire, les études ont démontré qu’elle pouvait contribuer à promouvoir une réponse inflammatoire ainsi que des dommages pulmonaires. L’interaction entre le traumatisme médullaire et la ventilation mécanique, indispensable au maintien de l’équilibre des échanges respiratoires, est inconnue à ce jour. En voulant protéger les tissus, cellules et organes, l’organisme met en œuvre toute une panoplie de réponses inflammatoires à différents endroits. Nous pensons que ces réponses peuvent être altérées via l’interaction entre ce traumatisme et cette ventilation mécanique, sous l’influence de la principale source cellulaire de cytokines pour la défense de l’hôte, le macrophage, récemment classé en deux phénotypes principaux: 1) l’activation classique de type M1 et 2) l’activation alternative de type M2. Le phénotype M1 est conduit par le facteur GM-CSF et induit par l’interféron IFN-ɣ ainsi que le lipopolysaccharide. Le phénotype M2 quant à lui, est conduit par le facteur M-CSF et induit par les interleukines IL-4, IL-13 ou IL-21. M1 relâche principalement IL-1β, IL-6, TNF-α et MIP-1α tandis que M2 principalement IL-10 et MCP-1. Toutefois, nous ignorons actuellement par quel type d’activation se manifestera cette réponse immunitaire et si l’application de support respiratoire pourrait entraîner un risque inflammatoire additionnel au site du traumatisme. Nous ignorons également si la ventilation mécanique affecterait, à distance, les tissus de la moelle épinière via une inflammation systémique et amplifierait alors le dommage initial. Il n’existe pas à ce jour, de thérapie qui ait montré d’effet bénéfique réel envers une récupération fonctionnelle des patients blessés médullaires. Il paraît donc essentiel de déterminer si la ventilation mécanique peut moduler l’inflammation post-traumatique à la fois au niveau pulmonaire et au site de la lésion. Ce travail visait à caractériser les liens entre l’inflammation issue du traumatisme médullaire et celle issue de la ventilation, dans le but de fournir une meilleure compréhension des mécanismes inflammatoires activés dans ce contexte. L’étude a été menée sur un modèle animal. Elle consistait à évaluer : 1) si le traumatisme médullaire influençait les réponses inflammatoires pulmonaires induites par la ventilation mécanique, y compris le phénotype des macrophages alvéolaires et 2) si la ventilation pouvait altérer à distance, les tissus de la moelle épinière. L’impact de la blessure médullaire sur l’inflammation pulmonaire et locale, induite par la ventilation fut interprété grâce à l’analyse des cellules inflammatoires dans les lavages broncho-alvéolaires et dans les tissus prélevés à l’endroit de la blessure après 24 heures. Ces analyses ont démontré un profil spécifique des cytokines pulmonaires et médullaires. Elles ont révélé que la ventilation mécanique a engendré un environnement pro-inflammatoire en faveur d’un phénotype M1 chez les animaux ayant bénéficié de la thérapie respiratoire. Inversement, l’atteinte thoracique chez les animaux sans ventilation, a montré qu’une réponse immunitaire avait été activée en faveur d’un environnement anti-inflammatoire de phénotype M2. La lésion cervicale quant à elle a induit un profil de cytokines différent et les réponses au stress oxydatif dans le poumon induites par la ventilation ont été réduites significativement. De plus, une lésion médullaire a augmenté l’expression d’IL-6 et la ventilation a diminué l’IL-1β et augmenté le TNF-α dans les tissus de la moelle. Finalement, ces données ont fourni les premières évidences que la ventilation a induit d’avantage à un phénotype pulmonaire M1 et que le traumatisme médullaire a impacté spécifiquement les réponses inflammatoires et oxydatives dans le poumon. La ventilation a contribué non seulement à distance à une inflammation des tissus médullaires lésés mais aussi des tissus sains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall objective of the study is to examine the problems and prospects of the tea on industry in Kerala. The specific objectives are to trace the historical evolution of the tea plantation industry in India with special reference to Kerala and to study the performance of tea plantation industry in Kerala. In order to analyse the growth performance of tea plantation industry in Kerala in a comparative perspective, growth rates for the neighbouring states of Karnataka and Tamilnadu are estimated along with the National, South Indian and North Indian estimates. Tea plantation industry is a labour intensive activity. Productivity has been low primarily because of the over aging. In all the factories visited only Black tea is produced. In factories outmoded machines which installed years ago is still used which will increase the cost of production. The major problem is high cost of production and low price realization. The workers are found to be not satisfied with their working conditions- long journey to work place, absence of resting places, latrine facilities etc. and also the problems arising from dust in the factory. At a macro level the tea plantation industry has been facing the adverse impacts of globalisation and trade liberalization. There is only one solution to this problem that is to improve the competitiveness in production of raw leaf and manufacturing of tea. Government has a very important role with specification of strict quality control

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of Queueing theory in areas like Computer networking, ATM facilities, Telecommunications and to many other numerous situation made people study Queueing models extensively and it has become an ever expanding branch of applied probability. The thesis discusses Reliability of a ‘k-out-of-n system’ where the server also attends external customers when there are no failed components (main customers), under a retrial policy, which can be explained in detail. It explains the reliability of a ‘K-out-of-n-system’ where the server also attends external customers and studies a multi-server infinite capacity Queueing system where each customer arrives as ordinary but can generate into priority customer which waiting in the queue. The study gives details on a finite capacity multi-server queueing system with self-generation of priority customers and also on a single server infinite capacity retrial Queue where the customer in the orbit can generate into a priority customer and leaves the system if the server is already busy with a priority generated customer; else he is taken for service immediately. Arrival process is according to a MAP and service times follow MSP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis investigated the elastic properties and phase transitions in selected mixed sulphate crystals – Lithium Hydrazinium Sulphate [LiN2H2SO4], Lithium Ammonium Sulphate [LiNH4SO4] and Lithium Potassium Sulphate [LiKSO4] – using ultrasonic technique. The pulse echo overlap technique has been used for measuring ultrasonic velocity and its dependence on temperature along different directions with waves of longitudinal and transverse polarizations. Two major numerical techniques and the corresponding computer programs developed as part of present work are presented in this thesis. All the 9 elastic constants of LHS are determined accurately from ultrasonic measurements and applying misorientation correction refines the constants. Ultrasonic measurements are performed in LAS to determine the elastic constants and to study the low temperature phase transitions. Temperature variation studies of elastic constant of LAS are performed for 6 different modes of propagation for heating and cooling at low temperatures. All the 5 independent elastic constants of LPS is determined using ultrasonic measurements. It is concluded that LPS crystal does not undergo a phase transition near this temperature. A comparison of the three crystals studied shows that LPS has maximum number of phase transitions and LHS has the least number. It is interesting to note that LPS has the simplest formula unit among the three. There is considerable scope for the future work on these crystals and others belonging to the sulphate family.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antennas are necessary and vital components of communication and radar systems, but sometimes their inability to adjust to new operating scenarios can limit system performance. Reconfigurable antennas can adjust with changing system requirements or environmental conditions and provide additional levels of functionality that may result in wider instantaneous frequency bandwidths, more extensive scan volumes, and radiation patterns with more desirable side lobe distributions. Their agility and diversity created new horizons for different types of applications especially in cognitive radio, Multiple Input Multiple Output Systems, satellites and many other applications. Reconfigurable antennas satisfy the requirements for increased functionality, such as direction finding, beam steering, radar, control and command, within a confined volume. The intelligence associated with the reconfigurable antennas revolved around switching mechanisms utilized. In the present work, we have investigated frequency reconfigurable polarization diversity antennas using two methods: 1. By using low-loss, high-isolation switches such as PIN diode, the antenna can be structurally reconfigured to maintain the elements near their resonant dimensions for different frequency bands and/or polarization. 2. Secondly, the incorporation of variable capacitors or varactors, to overcome many problems faced in using switches and their biasing. The performances of these designs have been studied using standard simulation tools used in industry/academia and they have been experimentally verified. Antenna design guidelines are also deduced by accounting the resonances. One of the major contributions of the thesis lies in the analysis of the designed antennas using FDTD based numerical computation to validate their performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The application vistas of superconductors have widened very much since the discovery of high TC superconductors (HTS) as many of the applications can be realised at 77 K rather than going down to 4.2 K, the liquid He temperature. One such application is the HTS current lead which is used to connect a superconducting system with a room temperature power source. Minimising heat leak to the cryogenic environment is the main advantage of introducing current leads into superconducting systems. The properties of HTSS likes zero resistance (avoiding joule heating) and very low thermal conductivity (minimized conductive heat transfer) make them ideal candidates to be used as current leads. There are two forms of HTS current leads. (i) bulk form (tube or rod) prepared either from YBCO or BSCCO and (ii) tape form prepared from Bi-2223 multifilamentary tapes. The tape form of current leads has many advantages with respect to the mechanical and thermal stability related criteria. Crucial information on various aspects of HTS current lead development are not available in the literature as those are kept proprietary by various companies around the world. The present work has been undertaken to tailor the properties of multifilamentary tapes for the current lead application and to optimise the processing parameters of the same for enhanced critical current density and field tolerance. Also it is the aim of the present investigation is to prepare prototype current leads engineered for operation in conduction cooled mode and test them for operational stability

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Salient pole brushless alternators coupled to IC engines are extensively used as stand-by power supply units for meeting in- dustrial power demands. Design of such generators demands high power to weight ratio, high e ciency and low cost per KVA out- put. Moreover, the performance characteristics of such machines like voltage regulation and short circuit ratio (SCR) are critical when these machines are put into parallel operation and alterna- tors for critical applications like defence and aerospace demand very low harmonic content in the output voltage. While designing such alternators, accurate prediction of machine characteristics, including total harmonic distortion (THD) is essential to mini- mize development cost and time. Total harmonic distortion in the output voltage of alternators should be as low as possible especially when powering very sophis- ticated and critical applications. The output voltage waveform of a practical AC generator is replica of the space distribution of the ux density in the air gap and several factors such as shape of the rotor pole face, core saturation, slotting and style of coil disposition make the realization of a sinusoidal air gap ux wave impossible. These ux harmonics introduce undesirable e ects on the alternator performance like high neutral current due to triplen harmonics, voltage distortion, noise, vibration, excessive heating and also extra losses resulting in poor e ciency, which in turn necessitate de-rating of the machine especially when connected to non-linear loads. As an important control unit of brushless alternator, the excitation system and its dynamic performance has a direct impact on alternator's stability and reliability. The thesis explores design and implementation of an excitation i system utilizing third harmonic ux in the air gap of brushless al- ternators, using an additional auxiliary winding, wound for 1=3rd pole pitch, embedded into the stator slots and electrically iso- lated from the main winding. In the third harmonic excitation system, the combined e ect of two auxiliary windings, one with 2=3rd pitch and another third harmonic winding with 1=3rd pitch, are used to ensure good voltage regulation without an electronic automatic voltage regulator (AVR) and also reduces the total harmonic content in the output voltage, cost e ectively. The design of the third harmonic winding by analytic methods demands accurate calculation of third harmonic ux density in the air gap of the machine. However, precise estimation of the amplitude of third harmonic ux in the air gap of a machine by conventional design procedures is di cult due to complex geome- try of the machine and non-linear characteristics of the magnetic materials. As such, prediction of the eld parameters by conven- tional design methods is unreliable and hence virtual prototyping of the machine is done to enable accurate design of the third har- monic excitation system. In the design and development cycle of electrical machines, it is recognized that the use of analytical and experimental methods followed by expensive and in exible prototyping is time consum- ing and no longer cost e ective. Due to advancements in com- putational capabilities over recent years, nite element method (FEM) based virtual prototyping has become an attractive al- ternative to well established semi-analytical and empirical design methods as well as to the still popular trial and error approach followed by the costly and time consuming prototyping. Hence, by virtually prototyping the alternator using FEM, the important performance characteristics of the machine are predicted. Design of third harmonic excitation system is done with the help of results obtained from virtual prototype of the machine. Third harmonic excitation (THE) system is implemented in a 45 KVA ii experimental machine and experiments are conducted to validate the simulation results. Simulation and experimental results show that by utilizing third harmonic ux in the air gap of the ma- chine for excitation purposes during loaded conditions, triplen harmonic content in the output phase voltage is signi cantly re- duced. The prototype machine with third harmonic excitation system designed and developed based on FEM analysis proved to be economical due to its simplicity and has the added advan- tage of reduced harmonics in the output phase voltage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die sogenannte natürliche Lüftung - Lüftung infolge Temperatur- und Windeinfluss - über geöffnete Fenster und Türen ist im Wohnbereich noch immer die häufigste Form des Lüftens. Die Wirkung des Lüftens wird einerseits von den baulichen Gegebenheiten, z.B. der Fenstergröße, Öffnungsfläche und Laibungstiefe sowie andererseits durch den Nutzer, der z.B. eine Gardine oder Rollos anbringt, beeinflusst. Über den genauen Einfluss von verschiedenen Faktoren auf den Luftwechsel existieren zur Zeit noch keine gesicherten Erkenntnisse. Die Kenntnis des Luftwechsels ist jedoch für die Planung und Ausführung von Gebäuden in Hinblick auf das energiesparende Bauen sowie unter bauphysikalischen und hygienischen Aspekten wichtig. Der Einsatz von Dreh-Kippfenstern sowie das Lüften über die Kippstellung ist in Deutschland üblich, so dass die Bestimmung des Luftwechsels über Kippfenster von großem Interesse ist. Ziel dieser Arbeit ist es, den thermisch induzierten Luftwechsel über ein Kippfenster unter Berücksichtigung verschiedener Randbedingungen zu beschreiben. Hierbei werden Variationen der Kippweite, Laibungs- und Heizungsanordnung berücksichtigt. Die Arbeit gliedert sich in drei Teile: im ersten Teil werden messtechnische Untersuchungen durchgeführt, im zweiten Teil exemplarisch einige messtechnisch untersuchten Varianten mit CFD simuliert und im dritten Teil ein verbesserter Modellansatz zur Beschreibung des Luftwechsels aus den Messwerten abgeleitet. Die messtechnischen Untersuchungen bei einer Kippweite von 10 cm zeigen, dass bei dem Vorhandensein einer raumseitigen Laibung oder einem unterhalb des Fensters angeordneten Heizkörpers mit einer Reduktion des Volumenstroms von rund 20 Prozent gegenüber einem Fenster ohne Laibung bzw. ohne Heizkörper gerechnet werden muss. Die Kombination von raumseitiger Laibung und Heizung vermindert das Luftwechselpotential um ca. 40 Prozent. Simuliert wird die Variante ohne Laibung und ohne Heizung für die Kippweiten 6 cm und 10 cm. Die Ergebnisse der mit CFD simulierten Tracergas-Messung weisen für beide Kippweiten im Mittel rund 13 Prozent höhere Zuluftvolumenströme im Vergleich zu den Messwerten auf. Die eigenen Messdaten bilden die Grundlage für die Anpassung eines Rechenmodells. Werden vor Ort die lichte Fensterhöhe und -breite, die Kippweite, die Rahmen- und Laibungstiefe sowie die Abstände der Laibung zum Flügelrahmen gemessen, kann die Öffnungsfläche in Abhängigkeit von der Einbausituation bestimmt werden. Der Einfluss der Heizung - bei einer Anordnung unterhalb des Fensters - wird über den entsprechenden Cd-Wert berücksichtigt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global power supply stability is faced to several severe and fundamental threats, in particular steadily increasing power demand, diminishing and degrading fossil and nuclear energy resources, very harmful greenhouse gas emissions, significant energy injustice and a structurally misbalanced ecological footprint. Photovoltaic (PV) power systems are analysed in various aspects focusing on economic and technical considerations of supplemental and substitutional power supply to the constraint conventional power system. To infer the most relevant system approach for PV power plants several solar resources available for PV systems are compared. By combining the different solar resources and respective economics, two major PV systems are identified to be very competitive in almost all regions in the world. The experience curve concept is used as a key technique for the development of scenario assumptions on economic projections for the decade of the 2010s. Main drivers for cost reductions in PV systems are learning and production growth rate, thus several relevant aspects are discussed such as research and development investments, technical PV market potential, different PV technologies and the energetic sustainability of PV. Three major market segments for PV systems are identified: off-grid PV solutions, decentralised small scale on-grid PV systems (several kWp) and large scale PV power plants (tens of MWp). Mainly by application of ‘grid-parity’ and ‘fuel-parity’ concepts per country, local market and conventional power plant basis, the global economic market potential for all major PV system segments is derived. PV power plant hybridization potential of all relevant power technologies and the global power plant structure are analyzed regarding technical, economical and geographical feasibility. Key success criteria for hybrid PV power plants are discussed and comprehensively analysed for all adequate power plant technologies, i.e. oil, gas and coal fired power plants, wind power, solar thermal power (STEG) and hydro power plants. For the 2010s, detailed global demand curves are derived for hybrid PV-Fossil power plants on a per power plant, per country and per fuel type basis. The fundamental technical and economic potentials for hybrid PV-STEG, hybrid PV-Wind and hybrid PV-Hydro power plants are considered. The global resource availability for PV and wind power plants is excellent, thus knowing the competitive or complementary characteristic of hybrid PV-Wind power plants on a local basis is identified as being of utmost relevance. The complementarity of hybrid PV-Wind power plants is confirmed. As a result of that almost no reduction of the global economic PV market potential need to be expected and more complex power system designs on basis of hybrid PV-Wind power plants are feasible. The final target of implementing renewable power technologies into the global power system is a nearly 100% renewable power supply. Besides balancing facilities, storage options are needed, in particular for seasonal power storage. Renewable power methane (RPM) offers respective options. A comprehensive global and local analysis is performed for analysing a hybrid PV-Wind-RPM combined cycle gas turbine power system. Such a power system design might be competitive and could offer solutions for nearly all current energy system constraints including the heating and transportation sector and even the chemical industry. Summing up, hybrid PV power plants become very attractive and PV power systems will very likely evolve together with wind power to the major and final source of energy for mankind.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient structure the prescribed heating induces a mean temperature anomaly proportional to the spatial Hilbert transform of the heating. The interior potential vorticity generated by the heating enhances this surface response. The time-varying part is independent of the heating and satisfies the usual linearized surface quasigeostrophic dynamics. It is shown that the surface temperature tendency is a spatial Hilbert transform of the temperature anomaly itself. It then follows that the temperature anomaly is periodically modulated with a frequency proportional to the vertical wind shear. A strong local bound on wave energy is also found. Reanalysis diagnostics are presented that indicate consistency with key findings from this theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A life cycle of the Madden–Julian oscillation (MJO) was constructed, based on 21 years of outgoing long-wave radiation data. Regression maps of NCEP–NCAR reanalysis data for the northern winter show statistically significant upper-tropospheric equatorial wave patterns linked to the tropical convection anomalies, and extratropical wave patterns over the North Pacific, North America, the Atlantic, the Southern Ocean and South America. To assess the cause of the circulation anomalies, a global primitive-equation model was initialized with the observed three-dimensional (3D) winter climatological mean flow and forced with a time-dependent heat source derived from the observed MJO anomalies. A model MJO cycle was constructed from the global response to the heating, and both the tropical and extratropical circulation anomalies generally matched the observations well. The equatorial wave patterns are established in a few days, while it takes approximately two weeks for the extratropical patterns to appear. The model response is robust and insensitive to realistic changes in damping and basic state. The model tropical anomalies are consistent with a forced equatorial Rossby–Kelvin wave response to the tropical MJO heating, although it is shifted westward by approximately 20° longitude relative to observations. This may be due to a lack of damping processes (cumulus friction) in the regions of convective heating. Once this shift is accounted for, the extratropical response is consistent with theories of Rossby wave forcing and dispersion on the climatological flow, and the pattern correlation between the observed and modelled extratropical flow is up to 0.85. The observed tropical and extratropical wave patterns account for a significant fraction of the intraseasonal circulation variance, and this reproducibility as a response to tropical MJO convection has implications for global medium-range weather prediction. Copyright © 2004 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An elastomeric, supramolecular healable polymer blend, comprising a chain-folding polyimide and a telechelic polyurethane with pyrenyl endgroups, is compatibilised by aromatic π−π stacking between the π-electron-deficient diimide groups and the π-electron-rich pyrenyl units. This inter-polymer interaction is key to forming a tough, healable, elastomeric material. Variable temperature FTIR analysis of the bulk material also conclusively demonstrates the presence of hydrogen bonding, which complements the π–π stacking interactions. Variable temperature SAXS analysis shows that the healable polymeric blend has a nanophase-separated morphology, and that the X-ray contrast between the two types of domain increases with increasing temperature, a feature that is repeatable over several heating and cooling cycles. A fractured sample of this material reproducibly regains more than 95% of the tensile modulus, 91% of the elongation to break, and 77% of the modulus of toughness of the pristine material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Europe is a densely populated region that is a significant global source of black carbon (BC) aerosol, but there is a lack of information regarding the physical properties and spatial/vertical distribution of rBC in the region. We present the first aircraft observations of sub-micron refractory BC (rBC) aerosol concentrations and physical properties measured by a single particle soot photometer (SP2) in the lower troposphere over Europe. The observations spanned a region roughly bounded by 50° to 60° N and from 15° W to 30° E. The measurements, made between April and September 2008, showed that average rBC mass concentrations ranged from about 300 ng m−3 near urban areas to approximately 50 ng m−3 in remote continental regions, lower than previous surface-based measurements. rBC represented between 0.5 and 3% of the sub-micron aerosol mass. Black carbon mass size distributions were log-normally distributed and peaked at approximately 180 nm, but shifted to smaller diameters (~160 nm) near source regions. rBC was correlated with carbon monoxide (CO) but had different ratios to CO depending on location and air mass. Light absorption coefficients were measured by particle soot absorption photometers on two separate aircraft and showed similar geographic patterns to rBC mass measured by the SP2. We summarize the rBC and light absorption measurements as a function of longitude and air mass age and also provide profiles of rBC mass concentrations and size distribution statistics. Our results will help evaluate model-predicted regional rBC concentrations and properties and determine regional and global climate impacts from rBC due to atmospheric heating and surface dimming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The co-adsorption of CO and O on the unreconstructed (1 x 1) phase of Ir {100} was examined by low energy electron diffraction (LEED) and temperature programmed desorption (TPD). When CO is adsorbed at 188 K onto the Ir{100} surface precovered with 0.5 ML O, a mixed c(4 x 2)-(2O + CO) overlayer is formed. All CO is oxidised upon heating and desorbs as CO2 in three distinct stages at 230 K, 330 K and 430 K in a 2:1:2 ratio. The excess oxygen left on the surface after all CO has reacted forms an overlayer with a LEED pattern with p(2 x 10) periodicity. This overlayer consists of stripes with a local p(2 x 1)-O arrangement of oxygen atoms separated by stripes of uncovered It. When CO is adsorbed at 300 K onto the surface precovered with 0.5 ML O an apparent (2 x 2) LEED pattern is observed. LEED IV analysis reveals that this pattern is a superposition of diffraction patterns from islands of c(2 x 2)-CO and p(2 x 1)-O structures on the surface. Heating this co-adsorbed overlayer leads to the desorption of CO, in two stages at 330 K and 430 K; the excess CO (0.1 ML) desorbs at 590 K. LEED IV structural analysis of the mixed c(4 x 2) O and CO overlayer shows that both the CO molecules and the O atoms occupy bridge sites. The O atoms show significant lateral displacements of 0.14 angstrom away from the CO molecules; the C-O bond is slightly expanded with respect to the gas phase (1.19 angstrom); the modifications of the Ir substrate with respect to the bulk-terminated surface are very small. (c) 2006 Elsevier B.V. All rights reserved.