1000 resultados para Sistemas de leitura de tela


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Química. Ramo optimização energética na indústria química

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores. Área de Especialização em Sistemas Autónomos

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Na sociedade atual, completamente dominada pela constante procura de informação, faz todo o sentido recorrer a formas organizadas de apresentar os dados recolhidos que permitam uma leitura rápida e acessível. As matrizes, pela sua estrutura, possibilitam este tipo de abordagem com vista ao tratamento de uma grande quantidade de informação. (...) Poucas áreas da Matemática sofreram nos últimos 30 anos uma evolução tão significativa como a Teoria de Matrizes. Isto deve-se ao desenvolvimento de computadores cada vez mais potentes do ponto de vista da capacidade computacional, bem como à introdução de métodos matriciais em diferentes áreas de aplicação. Atualmente, a Teoria de Matrizes é utilizada com frequência para modelar muitos fenómenos do mundo real. Mas quando é que surgiu este ramo da Matemática? (...) Embora este ramo da Matemática tenha sido desenvolvido a partir de meados do século XIX, conceitos elementares de matrizes remontam ao período anterior ao nascimento de Cristo, uma vez que os chineses aplicavam métodos matriciais para resolver certos sistemas de equações. Os quadrados mágicos constituem outro exemplo de aplicação rudimentar do conceito de matriz. As lendas sugerem que os quadrados mágicos são originários da China, tendo sido referidos pela primeira vez num manuscrito do tempo do imperador Yu, cerca de 2200 a. C. (...) Em 1514, Albrecht Dürer, conhecido artista da Renascença, pintou um quadro intitulado "Melancolia", onde figura um quadrado mágico, precisamente de ordem 4 (figura 2). De notar que os dois números centrais da última linha do quadrado permitem ler "1514", o ano em que o quadro foi pintado. O leitor pode comprovar que a soma dos números de cada linha, de cada coluna e de cada uma das duas diagonais desse quadrado é sempre igual a 34, a constante mágica. Além disso, 34 é a soma dos números dos cantos (16+13+4+1=34) e do quadrado central 2x2 (10+11+6+7=34). (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunicação apresentada no I Congresso Internacional "A voz dos Avós: Migração e Património Cultural", realizado na Universidade dos Açores, de 8 a 11 de maio de 2008. O texto encontra-se publicado no livro de Actas do evento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comunicação apresentada no I Encontro de Didácticas nos Açores, realizado na Universidade dos Açores, nos dias 26 e 27 de fevereiro de 1998. Este texto encontra-se publicado nas actas do encontro.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este artigo visa divulgar um projeto de leitura que a autora tem desenvolvido, nos últimos anos, com os alunos do curso de Educação Básica da Universidade dos Açores, em prol do sucesso escolar das crianças-aprendentes das competências leituras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Projeto de Intervenção apresentado à Escola Superior de Educação de Lisboa para a obtenção de grau de Mestre em Didática da Língua Portuguesa no 1º e 2º CEB

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho descreve as actividades desenvolvidas no âmbito de uma task-force para revitalizar a função Sistemas de Informação de uma grande empresa nacional. Apresenta, em particular, o sistema de indicadores de gestão definido nesse contexto

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os códigos de barras são exemplos de sistemas de identificação com algarismo de controlo, que tem como objetivo verificar se foi cometido pelo menos um erro de escrita, leitura ou transmissão da informação. Nos códigos de barras, o algarismo de controlo é o algarismo das unidades (primeiro algarismo da direita). Os restantes algarismos de um código de barras contêm informação específica. Por exemplo, os três primeiros algarismos da esquerda identificam sempre o país de origem (com a exceção dos códigos de barras dos livros, que apresentam o prefixo 978 ou 979, e dos códigos de uso interno das superfícies comerciais como, por exemplo, para os artigos embalados na padaria ou na peixaria de um supermercado, que começam por 2). Seguem-se alguns exemplos: 300-379 (França e Mónaco); 400-440 (Alemanha); 500-509 (Reino Unido); 520 (Grécia); 539 (Irlanda); 540-549 (Bélgica e Luxemburgo); 560 (Portugal); 690-695 (China); 760-769 (Suíça); 789-790 (Brasil); 840-849 (Espanha e Andorra); 888 (Singapura); 958 (Macau). Observe-se que os países com uma maior produção têm à sua disposição mais de um prefixo de três algarismos. (...) Para se verificar se o número do código de barras está correto, procede-se da seguinte forma (...) obtêm-se, respetivamente, as somas I e P; por fim, calcula-se o valor de S=I+3xP que deverá ser um múltiplo de 10 (ou seja, o seu algarismo das unidades deverá ser 0). (...) E que relação existe entre as barras e os algarismos? Ao olhar com atenção para um código de barras EAN-13, reparamos que os 13 algarismos são distribuídos da seguinte forma: o primeiro algarismo surge isolado à esquerda das barras, enquanto que os restantes surgem por baixo destas, divididos em dois grupos de seis algarismos separados por barras geralmente mais compridas do que as restantes: três barras nas laterais (preto-branco-preto) e cinco barras ao centro (branco-preto-branco-preto-branco). As restantes barras são mais curtas e codificam os 12 algarismos (indiretamente, também codificam o algarismo da esquerda). (...) A representação dos algarismos por barras brancas e pretas respeita alguns princípios como os de paridade e simetria, pelo que um algarismo não é sempre representado da mesma forma. Este aspeto permite que um código de barras possa ser lido por um leitor ótico sem qualquer ambiguidade, quer esteja na posição normal ou "de pernas para o ar". (...) Recentemente surgiu uma nova geração de códigos de barras designados por códigos de resposta rápida ou códigos QR (do inglês Quick Response). Certamente o leitor já os viu em cartazes publicitários ou em revistas. (...)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mestrado em Engenharia Electrotécnica e de Computadores – Ramo Automação e Sistemas.