597 resultados para Sistemas de computação sem fio
Resumo:
High dependability, availability and fault-tolerance are open problems in Service-Oriented Architecture (SOA). The possibility of generating software applications by integrating services from heterogeneous domains, in a reliable way, makes worthwhile to face the challenges inherent to this paradigm. In order to ensure quality in service compositions, some research efforts propose the adoption of verification techniques to identify and correct errors. In this context, exception handling is a powerful mechanism to increase SOA quality. Several research works are concerned with mechanisms for exception propagation on web services, implemented in many languages and frameworks. However, to the extent of our knowledge, no works found evaluates these mechanisms in SOA with regard to the .NET framework. The main contribution of this paper is to evaluate and to propose exception propagation mechanisms in SOA to applications developed within the .NET framework. In this direction, this work: (i)extends a previous study, showing the need to propose a solution to the exception propagation in SOA to applications developed in .NET, and (ii) show a solution, based in model obtained from the results found in (i) and that will be applied in real cases through of faults injections and AOP techniques.
Resumo:
Navigation, in both virtual and real environments, is the process of a deliberated movement to a specific place that is usually away from the origin point, and that cannot be perceived from it. Navigation aid techniques (TANs) have as their main objective help finding a path through a virtual environment to a desired location and, are widely used because they ease the navigation on these unknown environments. Tools like maps, GPS (Global Positioning System) or even oral instructions are real world examples of TAN usage. Most of the works which propose new TANs for virtual environments aim to analyze their impact in efficiency gain on navigation tasks from a known place to an unknown place. However, such papers tend to ignore the effect caused by a TAN usage over the route knowledge acquisition process, which is important on virtual to real training transfer, for example. Based on a user study, it was possible to confirm that TANs with different strategies affects the performance of search tasks differently and that the efficiency of the help provided by a TAN is not inversely related to the cognitive load of the technique’s aids. A technique classification formula was created. This formula utilizes three factors instead of only efficiency. The experiment’s data were applied to the formula and we obtained a better refinement of help level provided by TANs.
Resumo:
Cloud computing can be defined as a distributed computational model by through resources (hardware, storage, development platforms and communication) are shared, as paid services accessible with minimal management effort and interaction. A great benefit of this model is to enable the use of various providers (e.g a multi-cloud architecture) to compose a set of services in order to obtain an optimal configuration for performance and cost. However, the multi-cloud use is precluded by the problem of cloud lock-in. The cloud lock-in is the dependency between an application and a cloud platform. It is commonly addressed by three strategies: (i) use of intermediate layer that stands to consumers of cloud services and the provider, (ii) use of standardized interfaces to access the cloud, or (iii) use of models with open specifications. This paper outlines an approach to evaluate these strategies. This approach was performed and it was found that despite the advances made by these strategies, none of them actually solves the problem of lock-in cloud. In this sense, this work proposes the use of Semantic Web to avoid cloud lock-in, where RDF models are used to specify the features of a cloud, which are managed by SPARQL queries. In this direction, this work: (i) presents an evaluation model that quantifies the problem of cloud lock-in, (ii) evaluates the cloud lock-in from three multi-cloud solutions and three cloud platforms, (iii) proposes using RDF and SPARQL on management of cloud resources, (iv) presents the cloud Query Manager (CQM), an SPARQL server that implements the proposal, and (v) comparing three multi-cloud solutions in relation to CQM on the response time and the effectiveness in the resolution of cloud lock-in.
Resumo:
An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.
Resumo:
Multi-Cloud Applications are composed of services offered by multiple cloud platforms where the user/developer has full knowledge of the use of such platforms. The use of multiple cloud platforms avoids the following problems: (i) vendor lock-in, which is dependency on the application of a certain cloud platform, which is prejudicial in the case of degradation or failure of platform services, or even price increasing on service usage; (ii) degradation or failure of the application due to fluctuations in quality of service (QoS) provided by some cloud platform, or even due to a failure of any service. In multi-cloud scenario is possible to change a service in failure or with QoS problems for an equivalent of another cloud platform. So that an application can adopt the perspective multi-cloud is necessary to create mechanisms that are able to select which cloud services/platforms should be used in accordance with the requirements determined by the programmer/user. In this context, the major challenges in terms of development of such applications include questions such as: (i) the choice of which underlying services and cloud computing platforms should be used based on the defined user requirements in terms of functionality and quality (ii) the need to continually monitor the dynamic information (such as response time, availability, price, availability), related to cloud services, in addition to the wide variety of services, and (iii) the need to adapt the application if QoS violations affect user defined requirements. This PhD thesis proposes an approach for dynamic adaptation of multi-cloud applications to be applied when a service is unavailable or when the requirements set by the user/developer point out that other available multi-cloud configuration meets more efficiently. Thus, this work proposes a strategy composed of two phases. The first phase consists of the application modeling, exploring the similarities representation capacity and variability proposals in the context of the paradigm of Software Product Lines (SPL). In this phase it is used an extended feature model to specify the cloud service configuration to be used by the application (similarities) and the different possible providers for each service (variability). Furthermore, the non-functional requirements associated with cloud services are specified by properties in this model by describing dynamic information about these services. The second phase consists of an autonomic process based on MAPE-K control loop, which is responsible for selecting, optimally, a multicloud configuration that meets the established requirements, and perform the adaptation. The adaptation strategy proposed is independent of the used programming technique for performing the adaptation. In this work we implement the adaptation strategy using various programming techniques such as aspect-oriented programming, context-oriented programming and components and services oriented programming. Based on the proposed steps, we tried to assess the following: (i) the process of modeling and the specification of non-functional requirements can ensure effective monitoring of user satisfaction; (ii) if the optimal selection process presents significant gains compared to sequential approach; and (iii) which techniques have the best trade-off when compared efforts to development/modularity and performance.
Resumo:
The real-time embedded systems design requires precise control of the passage of time in the computation performed by the modules and communication between them. Generally, these systems consist of several modules, each designed for a specific task and restricted communication with other modules in order to obtain the required timing. This strategy, called federated architecture, is already becoming unviable in front of the current demands of cost, required performance and quality of embedded system. To address this problem, it has been proposed the use of integrated architectures that consist of one or few circuits performing multiple tasks in parallel in a more efficient manner and with reduced costs. However, one has to ensure that the integrated architecture has temporal composability, ie the ability to design each task temporally isolated from the others in order to maintain the individual characteristics of each task. The Precision Timed Machines are an integrated architecture approach that makes use of multithreaded processors to ensure temporal composability. Thus, this work presents the implementation of a Precision Machine Timed named Hivek-RT. This processor which is a VLIW supporting Simultaneous Multithreading is capable of efficiently execute real-time tasks when compared to a traditional processor. In addition to the efficient implementation, the proposed architecture facilitates the implementation real-time tasks from a programming point of view.
Resumo:
Location systems have become increasingly part of people's lives. For outdoor environments, GPS appears as standard technology, widely disseminated and used. However, people usually spend most of their daily time in indoor environments, such as: hospitals, universities, factories, buildings, etc. In these environments, GPS does not work properly causing an inaccurate positioning. Currently, to perform the location of people or objects in indoor environments no single technology could reproduce for indoors the same result achieved by GPS for outdoors environments. Due to this, it is necessary to consider use of information from multiple sources using diferent technologies. Thus, this work aims to build an Adaptable Platform for Indoor location. Based on this goal, the IndoLoR platform is proposed. This platform aims to allow information reception from diferent sources, data processing, data fusion, data storage and data retrieval for the indoor location context.
Resumo:
Location systems have become increasingly part of people's lives. For outdoor environments, GPS appears as standard technology, widely disseminated and used. However, people usually spend most of their daily time in indoor environments, such as: hospitals, universities, factories, buildings, etc. In these environments, GPS does not work properly causing an inaccurate positioning. Currently, to perform the location of people or objects in indoor environments no single technology could reproduce for indoors the same result achieved by GPS for outdoors environments. Due to this, it is necessary to consider use of information from multiple sources using diferent technologies. Thus, this work aims to build an Adaptable Platform for Indoor location. Based on this goal, the IndoLoR platform is proposed. This platform aims to allow information reception from diferent sources, data processing, data fusion, data storage and data retrieval for the indoor location context.
Resumo:
Component-based Software Engineering (CBSE) and Service-Oriented Architecture (SOA) became popular ways to develop software over the last years. During the life-cycle of a software system, several components and services can be developed, evolved and replaced. In production environments, the replacement of core components, such as databases, is often a risky and delicate operation, where several factors and stakeholders should be considered. Service Level Agreement (SLA), according to ITILv3’s official glossary, is “an agreement between an IT service provider and a customer. The agreement consists on a set of measurable constraints that a service provider must guarantee to its customers.”. In practical terms, SLA is a document that a service provider delivers to its consumers with minimum quality of service (QoS) metrics.This work is intended to assesses and improve the use of SLAs to guide the transitioning process of databases on production environments. In particular, in this work we propose SLA-Based Guidelines/Process to support migrations from a relational database management system (RDBMS) to a NoSQL one. Our study is validated by case studies.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Multi-objective problems may have many optimal solutions, which together form the Pareto optimal set. A class of heuristic algorithms for those problems, in this work called optimizers, produces approximations of this optimal set. The approximation set kept by the optmizer may be limited or unlimited. The benefit of using an unlimited archive is to guarantee that all the nondominated solutions generated in the process will be saved. However, due to the large number of solutions that can be generated, to keep an archive and compare frequently new solutions to the stored ones may demand a high computational cost. The alternative is to use a limited archive. The problem that emerges from this situation is the need of discarding nondominated solutions when the archive is full. Some techniques were proposed to handle this problem, but investigations show that none of them can surely prevent the deterioration of the archives. This work investigates a technique to be used together with the previously proposed ideas in the literature to deal with limited archives. The technique consists on keeping discarded solutions in a secondary archive, and periodically recycle these solutions, bringing them back to the optimization. Three methods of recycling are presented. In order to verify if these ideas are capable to improve the archive content during the optimization, they were implemented together with other techniques from the literature. An computational experiment with NSGA-II, SPEA2, PAES, MOEA/D and NSGA-III algorithms, applied to many classes of problems is presented. The potential and the difficulties of the proposed techniques are evaluated based on statistical tests.
Resumo:
Given the growing demand for the development of mobile applications, driven by use increasingly common in smartphones and tablets grew in society the need for remote data access in full in the use of mobile application without connectivity environments where there is no provision network access at all times. Given this reality, this work proposes a framework that present main functions are the provision of a persistence mechanism, replication and data synchronization, contemplating the creation, deletion, update and display persisted or requested data, even though the mobile device without connectivity with the network. From the point of view of the architecture and programming practices, it reflected in defining strategies for the main functions of the framework are met. Through a controlled study was to validate the solution proposal, being found as the gains in reducing the number of lines code and the amount of time required to perform the development of an application without there being significant increase for the operations.
Resumo:
Given the growing demand for the development of mobile applications, driven by use increasingly common in smartphones and tablets grew in society the need for remote data access in full in the use of mobile application without connectivity environments where there is no provision network access at all times. Given this reality, this work proposes a framework that present main functions are the provision of a persistence mechanism, replication and data synchronization, contemplating the creation, deletion, update and display persisted or requested data, even though the mobile device without connectivity with the network. From the point of view of the architecture and programming practices, it reflected in defining strategies for the main functions of the framework are met. Through a controlled study was to validate the solution proposal, being found as the gains in reducing the number of lines code and the amount of time required to perform the development of an application without there being significant increase for the operations.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.
Resumo:
The Quadratic Minimum Spanning Tree (QMST) problem is a generalization of the Minimum Spanning Tree problem in which, beyond linear costs associated to each edge, quadratic costs associated to each pair of edges must be considered. The quadratic costs are due to interaction costs between the edges. When interactions occur between adjacent edges only, the problem is named Adjacent Only Quadratic Minimum Spanning Tree (AQMST). Both QMST and AQMST are NP-hard and model a number of real world applications involving infrastructure networks design. Linear and quadratic costs are summed in the mono-objective versions of the problems. However, real world applications often deal with conflicting objectives. In those cases, considering linear and quadratic costs separately is more appropriate and multi-objective optimization provides a more realistic modelling. Exact and heuristic algorithms are investigated in this work for the Bi-objective Adjacent Only Quadratic Spanning Tree Problem. The following techniques are proposed: backtracking, branch-and-bound, Pareto Local Search, Greedy Randomized Adaptive Search Procedure, Simulated Annealing, NSGA-II, Transgenetic Algorithm, Particle Swarm Optimization and a hybridization of the Transgenetic Algorithm with the MOEA-D technique. Pareto compliant quality indicators are used to compare the algorithms on a set of benchmark instances proposed in literature.