947 resultados para Single magnetic atom
Resumo:
We investigate the effect of a perpendicular magnetic field on the single-particle charging spectrum of a graphene quantum dot embedded inline with a nanoribbon. We observe uniform shifts in the single-particle spectrum which coincide with peaks in the magnetoconductance, implicating Landau level condensation and edge state formation as the mechanism underlying magnetic field-enhanced transmission through graphene nanostructures. The experimentally determined ratio of bulk to edge states is supported by single-particle band-structure simulations, while a fourfold beating of the Coulomb blockade transmission amplitude points to many-body interaction effects during Landau level condensation of the ν=0 state. © 2012 American Physical Society.
Resumo:
Neutron scattering experiments are fundamental to the study of magnetic order and related phenomena in a range of superconducting and magnetic materials. Traditional methods of crystal growth, however, do not yield single crystals of sufficient size for practical neutron scattering measurements. In this paper, we demonstrate the growth of relatively pure, large Y Ba 2Cu 3O 7 single crystals up to 30mm in diameter using a top seeded melt growth process. The characterization of the microstructural and magnetic properties of these crystals indicates that they contain <2% of impurity phases and, hence, exhibit only weak flux pinning behaviour. © 2012 IOP Publishing Ltd.
Resumo:
It is widely believed that the second-generation high-temperature superconducting (2G HTS) tapes with magnetic substrates suffer higher transport loss compared to those with non-magnetic substrates. To test this, we prepared two identical coils with magnetic and non-magnetic substrates, respectively. The experimental result was rather surprising that they generated roughly the same amount of transport loss. We used finite element method to understand this result. It is found that, unlike in the single tape where the magnetic field-dependent critical current characteristic can be neglected and the effect of magnetic substrate dominates, the magnetic field-dependent critical current characteristic of 2G tape plays as an equally important role as magnetic substrate in terms of HTS coils. © 2012 American Institute of Physics.
Resumo:
Computational fluid dynamics (CFD) simulations are becoming increasingly widespread with the advent of more powerful computers and more sophisticated software. The aim of these developments is to facilitate more accurate reactor design and optimization methods compared to traditional lumped-parameter models. However, in order for CFD to be a trusted method, it must be validated using experimental data acquired at sufficiently high spatial resolution. This article validates an in-house CFD code by comparison with flow-field data obtained using magnetic resonance imaging (MRI) for a packed bed with a particle-to-column diameter ratio of 2. Flows characterized by inlet Reynolds numbers, based on particle diameter, of 27, 55, 111, and 216 are considered. The code used employs preconditioning to directly solve for pressure in low-velocity flow regimes. Excellent agreement was found between the MRI and CFD data with relative error between the experimentally determined and numerically predicted flow-fields being in the range of 3-9%. © 2012 American Institute of Chemical Engineers (AIChE).
Resumo:
Single grain, (RE)BCO bulk superconductors in large or complicated geometries are required for a variety of potential applications, such as motors and generators and magnetic shielding devices. As a result, top, multi-seeded, melt growth (TMSMG) has been investigated over the past two years in an attempt to enlarge the size of (RE)BCO single grains specifically for such applications. Of these multi-seeding techniques, so-called bridge seeding provides the best alignment of two seeds in a single grain growth process. Here we report, for the first time, the successful growth of YBCO using a special, 45{\deg} - 45{\deg}, arrangement of bridge-seeds. The superconducting properties, including trapped field, of the multi-seeded YBCO grains have been measured for different bridge lengths of the 45{\deg}- 45{\deg} bridge-seeds. The boundaries at the impinging growth front and the growth features of the top, multi-seeded surface and cross-section of the multi-seeded, samples have been analysed using optical microscopy. The results suggest that an impurity-free boundary between the two seeds of each leg of the bridge-seed can form when 45{\deg}- 45{\deg} bridge-seeds are used to enlarge the size of YBCO grains.
Resumo:
Recent progress in material science has proved that high-temperature superconductors, such as bulk melt-processed yttrium barium copper oxide (YBCO) single domains, have a great potential to trap significant magnetic fields. In this paper, we will describe a novel method of YBCO magnetization that only requires the applied field to be at the level of a permanent magnet. Instead of applying a pulsed high magnetic field on the YBCO, a thermally actuated material (TAM), such as Mg0.15}hbox{Cu}0.15} hbox{Zn0.7 Ti0.04}Fe1.96boxO4, has been used as an intermedium to create a travelling magnetic field by changing the local temperature so that the local permeability is changed to build up the magnetization of the YBCO gradually after multiple pumping cycles. It is well known that the relative permeability of ferrite is a function of temperature and its electromagnetic properties can be greatly changed by adding dopants such as Mg or Ti; therefore, it is considered to be the most promising TAM for future flux pumping technology. Ferrite samples were fabricated by means of the conventional ceramic method with different dopants. Zinc and iron oxides were used as raw materials. The samples were sintered at 1100 C, 1200 C} , and 1300 C. The relative permeability of the samples was measured at temperatures ranging from 77 to 300 K. This work investigates the variation of the magnetic properties of ferrites with different heat treatments and doping elements and gives a smart insight into finding better ferrites suitable for flux pumping technology. © 2002-2011 IEEE.
Resumo:
Both MgB2 and (RE)BCO bulk materials can provide a highly compact source of magnetic field when magnetized. The properties of these materials when magnetized by a pulsed field are potentially useful for a number of applications, including magnetic levitation. This paper reports on pulsed field magnetization of single 25 mm diameter (RE)BCO bulks using a recently constructed pulse magnetization facility, which allows an automated sequence of pulses to be delivered. The facility allows measurement of force between a magnetized (RE)BCO bulk and a bulk MgB2 hollow cylinder, which is field cooled in the field of the magnetized (RE)BCO bulk. Hysteresis cycling behavior for small displacement is also measured to extract the stiffness value. The levitation forces up to 500 N were obtained, the highest ever measured between two bulks and proves the concept of a bulk-bulk superconducting bearing design. © 2002-2011 IEEE.
Resumo:
This paper reports the results of an experimental investigation of the performance of two types of magnetic screens assembled from YBa2Cu3O7-d (YBCO) coated conductors. Since effective screening of the axial DC magnetic field requires the unimpeded flow of an azimuthal persistent current, we demonstrate a configuration of a screening shell made out of standard YBCO coated conductor capable to accomplish that. The screen allows the persistent current to flow in the predominantly azimuthal direction at a temperature of 77 K. The persistent screen, incorporating a single layer of superconducting film, can attenuate an external magnetic field of up to 5 mT by more than an order of magnitude. For comparison purposes, another type of screen which incorporates low critical temperature quasi-persistent joints was also built. The shielding technique we describe here appears to be especially promising for the realization of large scale high-Tc superconducting screens.
Resumo:
Silver paint has been tested as a soldering agent for DyBaCuO single-domain welding. Junctions have been manufactured on Dy-Ba-Cu-O single-domains cut either along planes parallel to the c-axis or along the ab-planes. Microstructural and superconducting characterisations of the samples have been performed. For both types of junctions, the microstructure in the joined area is very clean: no secondary phase or Ag particles segregation has been observed. Electrical and magnetic measurements for all configurations of interest are reported $\rho(T)$ curves, and Hall probe mapping). The narrow resistive superconducting transition reported for all configurations shows that the artificial junction does not affect significantly the measured superconducting properties of the material.
Resumo:
When bulk RE-BCO superconductors are used as permanent magnets in engineering applications, they are likely to experience transient variations of the applied magnetic field. The resulting vortex motion may cause a significant temperature increase. As a consequence the initial trapped flux is reduced. In the present work, we first focus on the cause of a temperature increase. The temperature distribution within a superconducting finite cylinder subjected to an alternating magnetic field is theoretically predicted. Results are compared to experimental data obtained by two temperature sensors attached to a bulk YBCO pellet. Second, we consider curative methods for reducing the effect of heat flux on the temperature increase. Hall-probe mappings on YBCO samples maintained out of the thermal equilibrium are performed for two different morphologies : a plain single domain and a single domain with a regularly spaced hole array. The drilled single-domain displays a trapped induction which is weakly affected by the local heating while displaying a high trapped field. © 2006 IOP Publishing Ltd.
Resumo:
We report about the magnetoresistive properties of calcium-doped lanthanum manganate thin films grown by RF magnetron sputtering on single crystalline LaAlO3 and MgO substrates. Two orientations of the magnetic field with respect to the electrical current have been studied: (i) magnetic field in the plane of the film and parallel to the electrical current, and (ii) magnetic field perpendicular to the plane of the film. The film grown on LaAlO 3 is characterised by an unusual magnetoresistive behaviour when the magnetic field is applied perpendicular to the film plane: the appearance of two bumps in the field dependence of the resistance is shown to be related to the occurrence of anisotropic magnetoresistive effects in manganate films. © 2004 Elsevier B.V. All rights reserved.
Resumo:
A variety of multiseeding techniques have been investigated over the past 20 yr in an attempt to enlarge bulk (RE)BCO superconducting samples fabricated by the top-seeded melt growth (TSMG) process for practical applications. Unfortunately, these studies have failed to establish whether technically useful values of trapped field can be achieved in multiseeded bulk samples. In this work specially designed, 0°-0° and 45°-45° bridge seeds of different lengths have been employed to produce improved alignment of the seeds during the TSMG process. The ability of these bridge-seeded samples to trap magnetic field, which is the key superconducting property for practical applications of bulk (RE)BCO, is compared for the samples seeded using 0°-0° and 45°-45° bridge seeds of different lengths. The grain boundaries produced by these bridge seeds are analyzed in detail, and the similarities and differences between the two bridge-seeding processes are discussed. © 2013 The American Ceramic Society.
Resumo:
We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.
Resumo:
A metal-encapsulating silicon fullerene, Eu@Si-20, has been predicted by density functional theory to be by far the most stable fullerene-like silicon structure. The Eu@Si-20 structure is a dodecahedron with D-2h symmetry in which the europium atom occupies the center site. The calculated results show that the europium atom has a large magnetic moment of nearly 7.0 Bohr magnetons. In addition, it was found that a stable "pearl necklace" nanowire, constructed by concatenating a series of Eu@Si-20 units, with the central europium atom, retains the high spin moment. The magnetic structure of the nanowire indicates potential applications in the fields of spintronics and high-density magnetic storage.
Resumo:
Spin dynamics in the first and second subbands have been examined simultaneously by time resolved Kerr rotation in a single-barrier heterostructure of a 500 nm thick GaAs absorption layer. By scanning the wavelengths of the probe and pump beams towards the short wavelength in the zero magnetic field, the spin coherent time T-2(1)* in the 1st subband E-1 decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. Meanwhile, the spin coherence time T-2(2)* in the 2nd subband E-2 remains very low at wavelengths longer than 810 nm, and then is dramatically enhanced afterwards. At 803 nm, T-2(2)* (450 ps) becomes ten times longer than T-2(1)* (50 ps). A new feature has been discovered at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T-2(1)* and T-2(2)*) and the effective g* factors (vertical bar g*(E-1)vertical bar and vertical bar g*(E-2)vertical bar) all display a sudden change, presumably due to the "resonant" spin exchange coupling between two spin opposite bands. Copyright (C) EPLA, 2008.