877 resultados para Simulated robots


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climate over the Arctic has undergone changes in recent decades. In order to evaluate the coupled response of the Arctic system to external and internal forcing, our study focuses on the estimation of regional climate variability and its dependence on large-scale atmospheric and regional ocean circulations. A global ocean–sea ice model with regionally high horizontal resolution is coupled to an atmospheric regional model and global terrestrial hydrology model. This way of coupling divides the global ocean model setup into two different domains: one coupled, where the ocean and the atmosphere are interacting, and one uncoupled, where the ocean model is driven by prescribed atmospheric forcing and runs in a so-called stand-alone mode. Therefore, selecting a specific area for the regional atmosphere implies that the ocean–atmosphere system can develop ‘freely’ in that area, whereas for the rest of the global ocean, the circulation is driven by prescribed atmospheric forcing without any feedbacks. Five different coupled setups are chosen for ensemble simulations. The choice of the coupled domains was done to estimate the influences of the Subtropical Atlantic, Eurasian and North Pacific regions on northern North Atlantic and Arctic climate. Our simulations show that the regional coupled ocean–atmosphere model is sensitive to the choice of the modelled area. The different model configurations reproduce differently both the mean climate and its variability. Only two out of five model setups were able to reproduce the Arctic climate as observed under recent climate conditions (ERA-40 Reanalysis). Evidence is found that the main source of uncertainty for Arctic climate variability and its predictability is the North Pacific. The prescription of North Pacific conditions in the regional model leads to significant correlation with observations, even if the whole North Atlantic is within the coupled model domain. However, the inclusion of the North Pacific area into the coupled system drastically changes the Arctic climate variability to a point where the Arctic Oscillation becomes an ‘internal mode’ of variability and correlations of year-to-year variability with observational data vanish. In line with previous studies, our simulations provide evidence that Arctic sea ice export is mainly due to ‘internal variability’ within the Arctic region. We conclude that the choice of model domains should be based on physical knowledge of the atmospheric and oceanic processes and not on ‘geographic’ reasons. This is particularly the case for areas like the Arctic, which has very complex feedbacks between components of the regional climate system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a flexible framework to calculate the optical properties of atmospheric aerosols at a given relative humidity based on their composition and size distribution. The similarity of this framework to climate model parameterisations allows rapid and extensive sensitivity tests of the impact of uncertainties in data or of new measurements on climate relevant aerosol properties. The data collected by the FAAM BAe-146 aircraft during the EUCAARI-LONGREX and VOCALS-REx campaigns have been used in a closure study to analyse the agreement between calculated and measured aerosol optical properties for two very different aerosol types. The agreement achieved for the EUCAARI-LONGREX flights is within the measurement uncertainties for both scattering and absorption. However, there is poor agreement between the calculated and the measured scattering for the VOCALS-REx flights. The high concentration of sulphate, which is a scattering aerosol with no absorption in the visible spectrum, made the absorption measurements during VOCALS-REx unreliable, and thus no closure study was possible for the absorption. The calculated hygroscopic scattering growth factor overestimates the measured values during EUCAARI-LONGREX and VOCALS-REx by ∼30% and ∼20%, respectively. We have also tested the sensitivity of the calculated aerosol optical properties to the uncertainties in the refractive indices, the hygroscopic growth factors and the aerosol size distribution. The largest source of uncertainty in the calculated scattering is the aerosol size distribution (∼35%), followed by the assumed hygroscopic growth factor for organic aerosol (∼15%), while the predominant source of uncertainty in the calculated absorption is the refractive index of organic aerosol (28–60%), although we would expect the refractive index of black carbon to be important for aerosol with a higher black carbon fraction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A realistic representation of the North Atlantic tropical cyclone tracks is crucial as it allows, for example, explaining potential changes in US landfalling systems. Here we present a tentative study, which examines the ability of recent climate models to represent North Atlantic tropical cyclone tracks. Tracks from two types of climate models are evaluated: explicit tracks are obtained from tropical cyclones simulated in regional or global climate models with moderate to high horizontal resolution (1° to 0.25°), and downscaled tracks are obtained using a downscaling technique with large-scale environmental fields from a subset of these models. For both configurations, tracks are objectively separated into four groups using a cluster technique, leading to a zonal and a meridional separation of the tracks. The meridional separation largely captures the separation between deep tropical and sub-tropical, hybrid or baroclinic cyclones, while the zonal separation segregates Gulf of Mexico and Cape Verde storms. The properties of the tracks’ seasonality, intensity and power dissipation index in each cluster are documented for both configurations. Our results show that except for the seasonality, the downscaled tracks better capture the observed characteristics of the clusters. We also use three different idealized scenarios to examine the possible future changes of tropical cyclone tracks under 1) warming sea surface temperature, 2) increasing carbon dioxide, and 3) a combination of the two. The response to each scenario is highly variable depending on the simulation considered. Finally, we examine the role of each cluster in these future changes and find no preponderant contribution of any single cluster over the others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The root endophytic fungus Piriformospora indica (Sebacinacea) forms mutualistic symbioses with a broad range of host plants, increasing their biomass production and resistance to fungal pathogens. We evaluated the effect of P. indica on Fusarium crown rot disease of wheat, under in vitro and glasshouse conditions. Interaction of P. indica and Fusarium isolates under axenic culture conditions indicated no direct antagonistic activity of P. indica against Fusarium isolates. Seedlings of wheat were inoculated with P. indica and pathogenic Fusarium culmorum or F. graminearum and grown in sterilised soil-free medium or in a non-sterilised mix of soil and sand. Fusarium alone reduced emergence and led to visible browning and reduced root growth. Roots of seedlings in pots inoculated with both Fusarium isolates and P. indica were free of visible symptoms; seed emergence and root biomass were equivalent to the uninoculated. DNA was quantified by real-time polymerase chain reaction (qPCR). The ratio of Fusarium DNA to wheat DNA rose rapidly in the plants inoculated with Fusarium alone; isolates and species were not significantly different. P. indica inoculation reduced the ratio of Fusarium to host DNA in the root systems. The reduction increased with time. The ratio of P. indica to wheat DNA initially rose but then declined in root systems without Fusarium. With Fusarium, the ratio rose throughout the experiment. The absolute amount of Fusarium DNA in root systems increased in the absence of P. indica but was static in plants co-inoculated with P. indica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of near-tropopause potential vorticity (PV) acts as a primary control on the evolution of extratropical cyclones. Diabatic processes such as the latent heating found in ascending moist warm conveyor belts modify PV. A dipole in diabatically-generated PV (hereafter diabatic PV) straddling the extratropical tropopause, with the positive pole above the negative pole, was diagnosed in a recently published analysis of a simulated extratropical cyclone. This PV dipole has the potential to significantly modify the propagation of Rossby waves and the growth of baroclinically-unstable waves. This previous analysis was based on a single case study simulated with 12-km horizontal grid spacing and parameterized convection. Here, the dipole is investigated in three additional cold-season extratropical cyclones simulated in both convection-parameterizing and convection-permitting model configurations. A diabatic PV dipole across the extratropical tropopause is diagnosed in all three cases. The amplitude of the dipole saturates approximately 36 hours from the time diabatic PV is accumulated. The node elevation of the dipole varies between 2-4 PVU in the three cases, and the amplitude of the system-averaged dipole varies between 0.2-0.4 PVU. The amplitude of the negative pole is similar in the convection-parameterizing and convection-permitting simulations. The positive pole, which is generated by long-wave radiative cooling, is weak in the convection-permitting simulations due to the small domain size which limits the accumulation of diabatic tendencies within the interior of the domain. The possible correspondence between the diabatic PV dipole and the extratropical tropopause inversion layer is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many theories for the Madden-Julian oscillation (MJO) focus on diabatic processes, particularly the evolution of vertical heating and moistening. Poor MJO performance in weather and climate models is often blamed on biases in these processes and their interactions with the large-scale circulation. We introduce one of three components of a model-evaluation project, which aims to connect MJO fidelity in models to their representations of several physical processes, focusing on diabatic heating and moistening. This component consists of 20-day hindcasts, initialised daily during two MJO events in winter 2009-10. The 13 models exhibit a range of skill: several have accurate forecasts to 20 days' lead, while others perform similarly to statistical models (8-11 days). Models that maintain the observed MJO amplitude accurately predict propagation, but not vice versa. We find no link between hindcast fidelity and the precipitation-moisture relationship, in contrast to other recent studies. There is also no relationship between models' performance and the evolution of their diabatic-heating profiles with rain rate. A more robust association emerges between models' fidelity and net moistening: the highest-skill models show a clear transition from low-level moistening for light rainfall to mid-level moistening at moderate rainfall and upper-level moistening for heavy rainfall. The mid-level moistening, arising from both dynamics and physics, may be most important. Accurately representing many processes may be necessary, but not sufficient for capturing the MJO, which suggests that models fail to predict the MJO for a broad range of reasons and limits the possibility of finding a panacea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes in the water balance of Eurasia and northern Africa in response to insolation forcing at 6000 y BP simulated by five atmospheric general circulation models have been compared with observations of changes in lake status. All of the simulations show enhancement of the Asian summer monsoon and of the high pressure cells over the Pacific and Central Asia and the Middle East, causing wetter conditions in northern India and southern China and drier conditions along the Chinese coast and west of the monsoon core. All of the models show enhancement of the African monsoon, causing wetter conditions in the zone between ca 10–20 °N. Four of the models show conditions wetter than present in southern Europe and drier than present in northern Europe. Three of the models show conditions similar to present in the mid-latitude continental interior, while the remaining models show conditions somewhat drier than present. The extent and location of each of the simulated changes varies between the models, as does the mechanism producing these changes. The lake data confirm some features of the simulations, but indicate discrepancies between observed and simulated climates. For example, the data show: (1) conditions wetter than present in central Asia, from India to northern China and Mongolia, indicating that the simulated Asian monsoon expansion is too small; (2) conditions wetter than present between ca. 10–30 °N in Africa, indicating that the simulated African monsoon expansion is too small; (3) that northern Europe was drier, but the area of significantly drier conditions was more localized (around the Baltic) than shown in the simulations; (4) that southern Europe was wetter than present, apparently consistent with the simulations, but pollen data suggest that this reflects an increase in summer rainfall whereas the models show winter precipitation, and (5) that the mid-latitude continental interior was generally wetter than present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Poor wheat seed quality in temperate regions is often ascribed to wet production environments. We investigated the possible effect of simulated rain during seed development and maturation on seed longevity in wheat (Triticum aestivum L.) cv. Tybalt grown in the field (2008, 2009) or a polythene tunnel house (2010). To mimic rain, the seed crops were wetted from above with the equivalent of 30mm (2008, 2009) or 25mm rainfall (2010) at different stages of seed development and maturation (17 to 58 DAA, days after 50% anthesis), samples harvested serially, and subsequent air-dry seed longevity estimated. No pre-harvest sprouting occurred. Seed longevity (p50, 50% survival period in experimental hermetic storage at 40°C with c. 15% moisture content) in field-grown controls increased during seed development and maturation attaining maxima at 37 (2008) or 44 DAA (2009); it declined thereafter. Immediate effects of simulated rain at 17-58 DAA in field studies (2008, 2009) on subsequent seed longevity were negative but small, e.g. a 1-4 d delay in seed quality improvement for treatments early in development but with no damage detected at final harvests. In rainfall-protected conditions (2010), simulated rain close to harvest maturity (55-56 DAA) reduced longevity immediately and substantially, with greater damage from two sequential days of wetting than one; again, later harvests provided evidence of recovery in subsequent longevity. In the absence of pre-harvest sprouting, the potentially deleterious effects of rainfall to wheat seed crops on subsequent seed longevity may be reversible in full or in part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple observational data sets and atmosphere-only simulations from the Coupled Model Intercomparison Project Phase 5 are analyzed to characterize recent rainfall variability and trends over Africa focusing on 1983–2010. Data sets exhibiting spurious variability, linked in part to a reduction in rain gauge density, were identified. The remaining observations display coherent increases in annual Sahel rainfall (29 to 43 mm yr−1 per decade), decreases in March–May East African rainfall (−14 to −65 mm yr−1 per decade), and increases in annual Southern Africa rainfall (32 to 41 mm yr−1 per decade). However, Central Africa annual rainfall trends vary in sign (−10 to +39 mm yr−1 per decade). For Southern Africa, observed and sea surface temperature (SST)-forced model simulated rainfall variability are significantly correlated (r~0.5) and linked to SST patterns associated with recent strengthening of the Pacific Walker circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Determining the time of emergence of climates altered from their natural state by anthropogenic influences can help inform the development of adaptation and mitigation strategies to climate change. Previous studies have examined the time of emergence of climate averages. However, at the global scale, the emergence of changes in extreme events, which have the greatest societal impacts, has not been investigated before. Based on state-of-the-art climate models, we show that temperature extremes generally emerge slightly later from their quasi-natural climate state than seasonal means, due to greater variability in extremes. Nevertheless, according to model evidence, both hot and cold extremes have already emerged across many areas. Remarkably, even precipitation extremes that have very large variability are projected to emerge in the coming decades in Northern Hemisphere winters associated with a wettening trend. Based on our findings we expect local temperature and precipitation extremes to already differ significantly from their previous quasi-natural state at many locations or to do so in the near future. Our findings have implications for climate impacts and detection and attribution studies assessing observed changes in regional climate extremes by showing whether they will likely find a fingerprint of anthropogenic climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sea-ice concentrations in the Laptev Sea simulated by the coupled North Atlantic-Arctic Ocean-Sea-Ice Model and Finite Element Sea-Ice Ocean Model are evaluated using sea-ice concentrations from Advanced Microwave Scanning Radiometer-Earth Observing System satellite data and a polynya classification method for winter 2007/08. While developed to simulate largescale sea-ice conditions, both models are analysed here in terms of polynya simulation. The main modification of both models in this study is the implementation of a landfast-ice mask. Simulated sea-ice fields from different model runs are compared with emphasis placed on the impact of this prescribed landfast-ice mask. We demonstrate that sea-ice models are not able to simulate flaw polynyas realistically when used without fast-ice description. Our investigations indicate that without landfast ice and with coarse horizontal resolution the models overestimate the fraction of open water in the polynya. This is not because a realistic polynya appears but due to a larger-scale reduction of ice concentrations and smoothed ice-concentration fields. After implementation of a landfast-ice mask, the polynya location is realistically simulated but the total open-water area is still overestimated in most cases. The study shows that the fast-ice parameterization is essential for model improvements. However, further improvements are necessary in order to progress from the simulation of large-scale features in the Arctic towards a more detailed simulation of smaller-scaled features (here polynyas) in an Arctic shelf sea.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In analysis of complex nuclear forensic samples containing lanthanides, actinides and matrix elements, rapid selective extraction of Am/Cm for quantification is challenging, in particular due the difficult separation of Am/Cm from lanthanides. Here we present a separation process for Am/Cm(III) which is achieved using a combination of AG1-X8 chromatography followed by Am/Cm extraction with a triazine ligand. The ligands tested in our process were CyMe4-BTPhen, CyMe4- BTBP, CA-BTP and CA-BTPhen. Our process allows for purification and quantification of Am and Cm (recoveries 80%–100%) and other major actinides in < 2d without the use of multiple columns or thiocyanate. The process is unaffected by high level Ca(II)/Fe(III)/Al(III) (10mg mL−1) and thus requires little pre-treatment of samples.