998 resultados para Simple Ternary Inverter
Resumo:
Whether proteins denature in all-or-none fashion or in a continuous fashion is as yet an unresolved problem. The all-or-none process implies that while the process of denaturation is going on, only two kinds of protein molecules can exist. One is completely unchanged and the other is altered. The altered protein molecules are indistinguishable. Underlying the 'continuum' models is the assumption that all the chains in a protein globule undergo similar changes so that it is enough to consider a single chain.
Resumo:
This paper presents a five-level inverter scheme with four two-level inverters for a four-pole induction motor (IM) drive. In a conventional three-phase four-pole IM, there exists two identical voltage-profile winding coil groups per phase around the armature, which are connected in series and spatially apart by two pole pitches. In this paper, these two identical voltage-profile pole-pair winding coils in each phase of the IM are disconnected and fed from four two-level inverters from four sides of the windings with one-fourth dc-link voltage as compared to a conventional five-level neutral-point-clamped inverter. The scheme presented in this paper does not require any special design modification for the induction machine. For this paper, a four-pole IM drive is used, and the scheme can be easily extended to IMs with more than four poles. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
The electron paramagnetic resonance (EPR) of ternary oxides of Cu(II) has been studied between 4.2 and 300 K. The systems include those with 180 degrees Cu-O-Cu interactions (such as Ln2CuO4, Sr2CuO2Cl2, Sr2CuO3 and Ca2CuO3) or 90 degrees Cu-O-Cu interactions (such as Y2Cu2O5 or BaCuO2) as well as those in which the Cu2+ ions are isolated (such as Y2BaCuO5, La1.8Ba1.2Cu0.9O4.8 and Bi2CuO4). The change in the EPR susceptibility as a function of temperature is compared with that of the DC magnetic susceptibility. Compounds with extended 180 degrees Cu-O-Cu interactions which have a low susceptibility also do not give EPR signals below room temperature. For compounds such as Ca2CuO3 with one-dimensional 180 degrees Cu-O-Cu interactions a weak EPR signal is found the temperature dependence of which is very different from that of the DC susceptibility. For Y2BaCuO5 as well as for La1.8Ba1.2Cu0.9O4.8 the EPR susceptibility as well as its temperature variation are comparable with those of the static susceptibility near room temperature but very different at low temperatures. Bi2CuO4 also shows a similar behaviour. In contrast, for Y2Cu2O5, in which the copper ions have a very distorted nonsquare-planar configuration, the EPR and the static susceptibility show very similar temperature dependences. In general, compounds in which the copper ions have a square-planar geometry give no EPR signal in the ground state (0 K) while those with a distortion from square-planar geometry do give a signal. The results are analysed in the light of recent MS Xalpha calculations on CuO46- square-planar clusters with various Cu-O distances as well as distortions. It is suggested that in square-planar geometry the ground state has an unpaired electron in anionic orbitals which is EPR inactive. Competing interactions from other cations, an increase in Cu-O distance or distortions from square-planar geometry stabilise another state which has considerably more Cu 3d character. These states are EPR active. Both these states, however, are magnetic. For isolated CuO46- clusters the magnetic interactions seem to involve only the states which have mainly anionic character.
Resumo:
Alternating Differential Scanning Calorimetric (ADSC) and electrical switching studies have been undertaken on Ge20Se80-xBix glasses (1 <= x <= 13), to understand the effect of topological thresholds on thermal properties and electrical switching behavior. It is found that the compositional dependence of glass transition temperature (Tg), crystallization temperature (T-c1) and thermal stability (AT) of Ge20Se80-xBix glasses show anomalies at a composition x= 5, the rigidity percolation/stiffness threshold of the system. Further, unusual variations are also observed in different thermal properties, such as T-g, T-c1, Delta T, Delta C-p and Delta H-NR, at the composition x= 10, which indicates the occurrence of chemical threshold in these glasses at this composition. Electrical switching studies indicate that Ge20Se8o_RBig glasses with 5 11 exhibit threshold switching behavior and those with x = 12 and 13 show memory switching. A sharp decrease has been noticed in the switching voltages with bismuth concentration, which is due to the more metallic nature of bismuth and the presence of Bi+ ions. Further, a saturation is seen in the decrease in V-T around x = 6, which is related to bismuth phase percolation at higher concentrations of Bi. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The crystal structures of 1-aminocyclohexane-1-carboxylic acid (H-Acc6-OH) and six derivatives (including dipeptides) have been determined. The derivatives are Boc-Acc6-OH, Boc-(Acc6)2-OH, Boc-L-Met-Acc6-OMe, ClCH2CO-Acc6-OH, p-BrC6H4CO-Acc6-OH oxazolone, and the symmetrical anhydride from Z-Acc6-OH, [(Z-Acc6)2O]. The cyclohexane rings in all the structures adopt an almost perfect chair conformation. The amino group occupies the axial position in six structures; the free amino acid is the only example where the carbonyl group occupies an axial position. The values determined for the torsion angles about the N–Cα(φ) and Cα–CO (ψ) bonds correspond to folded, potentially helical conformations for the Acc6 residue.
Resumo:
The role of convergence feedback on the stability of a coupled ocean‐atmosphere system is studied using model III of Hirst (1986). It is shown that the unstable coupled mode found by Hirst is greatly modified by the convergence feedback. If the convergence feedback strength exceeds a critical value, several new unstable intraseasonal modes are also introduced. These modes have very weak dependence on the wave number. These results may explain the behaviour of some coupled models and to some extent provide a mechanism for the observed aperiodicity of the El‐Nino and Southern Oscillation (ENSO) events.
Resumo:
Sixteen million nucleotide sequence of genome of various organisms have been analysed to detect and study the extent of occurrence of simple repetitive sequences. Two sequence motifs (TG/CA)n and (CT/AG)n capable of adopting unusual DNA structures, left handed Z-conformation and triple-helical conformation respectively, are found to be abundant in rodent and human genomes, but almost completely absent in bacterial genome. (TG/CA)n and (CT/AG)n sequences are present mostly in the intron or 5'/3' flanking regions of the genes. The presence of such repeat motifs in genomic sequence of higher eukaryotes has been correlated with their possible functional significance in nucleosome organization, recombination and gene expression.
Resumo:
In this paper, a new five-level inverter topology for open-end winding induction-motor (IM) drive is proposed. The open-end winding IM is fed from one end with a two-level inverter in series with a capacitor-fed H-bridge cell, while the other end is connected to a conventional two-level inverter. The combined inverter system produces voltage space-vector locations identical to that of a conventional five-level inverter. A total of 2744 space-vector combinations are distributed over 61 space-vector locations in the proposed scheme. With such a high number of switching state redundancies, it is possible to balance the H-bridge capacitor voltages under all operating conditions including overmodulation region. In addition to that, the proposed topology eliminates 18 clamping diodes having different voltage ratings compared with the neutral point clamped inverter. On the other hand, it requires only one capacitor bank per phase, whereas the flying-capacitor scheme for a five-level topology requires more than one capacitor bank per phase. The proposed inverter topology can be operated as a three-level inverter for full modulation range, in case of any switch failure in the capacitor-fed H-bridge cell. This will increase the reliability of the system. The proposed scheme is experimentally verified on a four-pole 5-hp IM drive.
Resumo:
A detailed theoretical analysis of flow through a quadrant plate weir is made in the light of the generalized theory of proportional weirs, using a numerical optimization procedure. It is shown that the flow through the quadrant plate weir has a linear discharge-head relationship valid for certain ranges of head. It is shown that the weir is associated with a reference plane or datum from which all heads are reckoned.Further, it is shown that the measuring range of the quadrant plate weir can be considerably enhanced by extending the tangents to the quadrants at the terminals of the quadrant plate weir. The importance of this weir (when the datum of the weir lies below its crest) as an outlet weir for grit chambers is highlighted. Experiments show excellent agreement with the theory by giving a constant average coefficient of discharge.
Resumo:
Hypo-eutectic Ti-6.5 wt % Si alloy modified by separate additions of misch metal and low surface tension elements (Na, Sr, Se and Bi) has been examined by microscopic study and thermal analysis. Addition of third element led to modification of microstructure with apparently no significant enhancement of tensile ductility, with the exception of bismuth. Bismuth enhanced the ductility of the alloy by a factor of two and elastic-plastic fracture toughness to 9 MPa m–1/2 from a value of almost zero. The improved ductility of bismuth modified alloy is attributed to the reduced interconnectivity of the eutectic suicide, absence of significant suicide precipitation in the eutectic region and increase in the volume fraction of uniformly distributed dendrites. These changes are accompanied by a decrease in the temperature of eutectic solidification.
Resumo:
A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.
Resumo:
Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic 'Al3Mn' structure, but also a new monoclinic phase called 'X' has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.
Resumo:
A simple n-state configurational excitation model which takes into account the presence of weakly connected pentamer units in liquid water is proposed. The model has features of both the “continuum” and “mixture” models. Calculations based on this model satisfactorily account for the important, diagnostic thermodynamic properties of water such as the density maximum, fraction of monomers and so on.