832 resultados para Silvered alloys
Resumo:
In this article a study of the fracture characteristics of Co66Fe4Mo2Si16B12 amorphous ribbon in the as-quenched state and after relaxation is presented. In the as-quenched state, the morphology of the crack surface shows a 'vein pattern' structure that corresponds to a large amount of plastic flow. After relaxation the surface morphology of the crack shows that when the temperature of the thermal annealing increases the plastic flow involved in the crack decreases. In the as-quenched state dynamic fracture characteristics (crack branching and stress wave induced crack) have been observed. These dynamic characteristics have not been observed in the relaxed samples but in the samples annealed at 250 °C for 20 min apart from the main crack, a crack along the width of the ribbon has been observed. © 2006 Elsevier B.V. All rights reserved.
Resumo:
This chapter focuses on relationships between plastic deformation structures and mechanical properties in metals and alloys deforming by dislocation glide. We start by summarizing plastic deformation processes, then look at the fundamental mechanisms of plastic deformation and explore how deformation structures evolve. We then turn to experimental techniques for characterization which have allowed deformation microstructures to be quantified in terms of common structural parameters. The microstructural evolution has been described over many length scales and analyzed theoretically based on general principles. The deformation microstructures are related to work hardening stages. Finally we identify correlations between a wide range of microstructural features and mechanical properties, particularly flow stress, and use experimental observations to illustrate their inter-relationships.
Resumo:
Thin films (100-500 nm) of the Si:O alloy have been systematically characterized in the optical absorption and electrical transport behavior, by varying the Si content from 43 up to 100 at. %. Magnetron sputtering or plasma enhanced chemical vapor deposition have been used for the Si:O alloy deposition, followed by annealing up to 1250 °C. Boron implantation (30 keV, 3-30× 1014 B/cm2) on selected samples was performed to vary the electrical sheet resistance measured by the four-point collinear probe method. Transmittance and reflectance spectra have been extracted and combined to estimate the absorption spectra and the optical band gap, by means of the Tauc analysis. Raman spectroscopy was also employed to follow the amorphous-crystalline (a-c) transition of the Si domains contained in the Si:O films. The optical absorption and the electrical transport of Si:O films can be continuously and independently modulated by acting on different parameters. The light absorption increases (by one decade) with the Si content in the 43-100 at. % range, determining an optical band gap which can be continuously modulated into the 2.6-1.6 eV range, respectively. The a-c phase transition in Si:O films, causing a significant reduction in the absorption coefficient, occurs at increasing temperatures (from 600 to 1100 °C) as the Si content decreases. The electrical resistivity of Si:O films can be varied among five decades, being essentially dominated by the number of Si grains and by the doping. Si:O alloys with Si content in the 60-90 at. % range (named oxygen rich silicon films), are proved to join an appealing optical gap with a viable conductivity, being a good candidate for increasing the conversion efficiency of thin-film photovoltaic cell. © 2010 American Institute of Physics.
Resumo:
The temperature dependence of the stress-induced martensite (SIM) formation in a Ti-10V-2Fe-3Al (Ti-1023) alloy under compressive loading has been studied. At low temperatures, the stress level at which martensite starts to form increases linearly with the deformation temperature, while the stress at which the deformation switches to regular plastic deformation is roughly temperature independent. A thermostatistical model for dislocation evolution is employed to describe deformation twinning in martensite. Combined effects of twinning induced plasticity and solid solution strengthening are considered in terms of temperature variations. The SIM effect disappears on deformation at temperatures beyond ~ 233 ° C, which is close to the predicted Ms temperature of 240°C. The thermostatistical model predicts a transition from twinned martensite to pure slip at 250°C. By providing a model to predict the martensite formation, and by describing deformation twinning, the present work provides a number of tools that may be employed to conceive new titanium alloys combining improved strength and ductility. © 2013 Elsevier B.V.
Resumo:
Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The Mg-Ga acceptor energy levels in GaN and random Al8In4Ga20N32 quaternary alloys are calculated using the first-principles band-structure method. We show that due to wave function localization, the MgGa acceptor energy level in the alloy is significantly lower than that of GaN, although the two materials have nearly identical band gaps. Our study demonstrates that forming AlxInyGa1-x-yN quaternary alloys can be a useful approach to lower acceptor ionization energy in the nitrides and thus provides an approach to overcome the p-type doping difficulty in the nitride system.