985 resultados para Silicon carbide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation has been made of the interactions between silicone oil and various solid substrates immersed in aqueous solutions. Measurements were made using an atomic force microscope (AFM) using the colloid-probe method. The silicone oil drop is simulated by coating a small silica sphere with the oil, and measuring the force as this coated sphere is brought close to contact with a flat solid surface. It is found that the silicone oil surface is negatively charged, which causes a double-layer repulsion between the oil drop and another negatively charged surface such as mica. With hydrophilic solids, this repulsion is strong enough to prevent attachment of the drop to the solid. However, with hydrophobic surfaces there is an additional attractive force which overcomes the double-layer repulsion, and the silicone oil drop attaches to the solid. A "ramp" force appears in some, but not all, of the data sets. There is circumstantial evidence that this force results from compression of the silicone oil film coated on the glass sphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we report on a metal-catalyst-free synthesis of carbon nanotubes (CNTs) on a pre-patterned Si(001) surface. Arrays of triangular-shaped holes were created by nanoindentation in specific sites of the sample. After germanium deposition and chemical vapor deposition (CVD) of acetylene, a few CNTs nucleated and grew from germanium nanoparticles. These results illustrate that it is possible to control the growth of CNTs without the use of any metal catalyst. By leading the assembly of Ge nanoparticles with a patterning technique, a precise control over the growth order is also attainable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular dynamics (MD) simulations have been employed to investigate the single-crystal Si properties with different pre-existing cavities under nanoindentation. Cavities with different radii and positions have been considered. It is found that pre-existing cavities in the Si substrate would obviously influence the mechanical properties of Si under nanoindentation. Furthermore, pre-existing cavities would absorb part of the strain energy during loading and then release during unloading. It would decrease plastic deformation to the substrate. Particularly, the larger of the cavity or the nearer of the cavity to the substrate’s top surface, the larger decrease of Young’s modulus and hardness is usually observed. Just as expected, the larger offset of the cavity in the lateral direction, the less influence is usually seen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma enhanced chemical vapour deposition silicon nitride thin films are widely used in microelectromechanical system devices as structural materials because the mechanical properties of those films can be tailored by adjusting deposition conditions. However, accurate measurement of the mechanical properties, such as hardness, of films with thicknesses at nanometric scale is challenging. In the present study, the hardness of the silicon nitride films deposited on silicon substrate under different deposit conditions was characterised using nanoindentation and nanoscratch deconvolution methods. The hardness values obtained from the two methods were compared. The effect of substrate on the measured results was discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nano silicon is widely used as the essential element of complementary metal–oxide–semiconductor (CMOS) and solar cells. It is recognized that today, large portion of world economy is built on electronics products and related services. Due to the accessible fossil fuel running out quickly, there are increasing numbers of researches on the nano silicon solar cells. The further improvement of higher performance nano silicon components requires characterizing the material properties of nano silicon. Specially, when the manufacturing process scales down to the nano level, the advanced components become more and more sensitive to the various defects induced by the manufacturing process. It is known that defects in mono-crystalline silicon have significant influence on its properties under nanoindentation. However, the cost involved in the practical nanoindentation as well as the complexity of preparing the specimen with controlled defects slow down the further research on mechanical characterization of defected silicon by experiment. Therefore, in current study, the molecular dynamics (MD) simulations are employed to investigate the mono-crystalline silicon properties with different pre-existing defects, especially cavities, under nanoindentation. Parametric studies including specimen size and loading rate, are firstly conducted to optimize computational efficiency. The optimized testing parameters are utilized for all simulation in defects study. Based on the validated model, different pre-existing defects are introduced to the silicon substrate, and then a group of nanoindentation simulations of these defected substrates are carried out. The simulation results are carefully investigated and compared with the perfect Silicon substrate which used as benchmark. It is found that pre-existing cavities in the silicon substrate obviously influence the mechanical properties. Furthermore, pre-existing cavities can absorb part of the strain energy during loading, and then release during unloading, which possibly causes less plastic deformation to the substrate. However, when the pre-existing cavities is close enough to the deformation zone or big enough to exceed the bearable stress of the crystal structure around the spherical cavity, the larger plastic deformation occurs which leads the collapse of the structure. Meanwhile, the influence exerted on the mechanical properties of silicon substrate depends on the location and size of the cavity. Substrate with larger cavity size or closer cavity position to the top surface, usually exhibits larger reduction on Young’s modulus and hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High resolution TEM images of boron carbide (B13C2) have been recorded and compared with images calculated using the multislice method as implemented by M. A. O'Keefe in the SHRLI programs. Images calculated for the [010] zone, using machine parameters for the JEOL 2000FX AEM operating at 200 keV, indicate that for the structure model of Will et al., the optimum defocus image can be interpreted such that white spots correspond to B12 icosahedra for thin specimens and to low density channels through the structure adjacent to the direct inter-icosahedral bonds for specimens of intermediate thickness (-40 > t > -100 nm). With this information, and from the symmetry observed in the TEM images, it is likely that the (101) twin plane passes through the center of icosahedron located at the origin. This model was tested using the method of periodic continuation. Resulting images compare favorably with experimental images, thus supporting the structural model. The introduction of a (101) twin plane through the origin creates distortions to the icosahedral linkages as well as to the intra-icosahedral bonding. This increases the inequivalence of adjacent icosahedral sites along the twin plane, and thereby increases the likelihood of bipolaron hopping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot pressed B13C2 sample shows a high density of variable width twins normal to (10-11). Subtle shifts or offsets of lattice fringes along the twin plane and normal to (10 5) were also observed. A B4C powder showed little evidence of stacking disorder in crystalline regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microstructures of hot-pressed B4C were monitored during in situ heating experiments from room temperature to 1000C by analytical electron microscopy (AEM). Variations in the microstructure of B4C were not observed. However, during heating, secondary phases formed in voids and on the surfaces of the specimen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Matrix metalloproteinases (MMPs) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness (EOT) over the time. We investigate the effect of surface functionalisation on the stability of pSi surface and evaluate the sensing performance. We successfully demonstrate MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.