928 resultados para SiSb phase change film
Resumo:
An attempt has been made to unequivocally identify the influence that inhomogeneous strain fields, surrounding point defects, have on the functional properties of thin film ferroelectrics. Single crystal thin film lamellae of BaTiO3 have been integrated into capacitor structures, and the functional differences between those annealed in oxygen and those annealed in nitrogen have been mapped. Key features, such as the change in the paraelectric-ferroelectric phase transition from first to second order were noted and found to be consistent with mean field modeling predictions for the effects of inhomogeneous strain. Switching characteristics appeared to be unaffected, suggesting that point defects have a low efficacy in domain wall pinning.
Resumo:
Fabrication of devices based on thin film structures deposited using the pulsed laser deposition technique relies on reproducibility and control of deposition rates over substrate areas as large as possible. Here we present an application of the random phase plate technique to smooth and homogenize the intensity distribution of a KrF laser footprint on the surface of a target which is to be ablated. It is demonstrated that intensity distributions over millimeter-sized spots on the target can be made insensitive to the typical changes that occur in the near-field intensity distribution of the ultraviolet output from a KrF laser. (C) 1999 American Institute of Physics. [S0034-6748(99)02504-6].
Resumo:
Following the UK Medical Research Council’s (MRC) guidelines for the development and evaluation of complex interventions, this study aimed to design, develop and optimise an educational intervention about young men and unintended teenage pregnancy based around an interactive film. The process involved identification of the relevant evidence base, development of a theoretical understanding of the phenomenon of unintended teenage pregnancy in relation to young men, and exploratory mixed methods research. The result was an evidence-based, theory-informed, user-endorsed intervention designed to meet the much neglected pregnancy education needs of teenage men and intended to increase both boys’ and girls’ intentions to avoid an unplanned pregnancy during adolescence. In prioritising the development phase, this paper addresses a gap in the literature on the processes of research-informed intervention design. It illustrates the application of the MRC guidelines in practice while offering a critique and additional guidance to programme developers on the MRC prescribed processes of developing interventions. Key lessons learned were: 1) know and engage the target population and engage gatekeepers in addressing contextual complexities; 2) know the targeted behaviours and model a process of change; and 3) look beyond development to evaluation and implementation.
Resumo:
This work mainly concentrate to understand the optical and electrical properties of amorphous zinc tin oxide and amorphous zinc indium tin oxide thin films for TFT applications. Amorphous materials are promising in achieving better device performance on temperature sensitive substrates compared to polycrystalline materials. Most of these amorphous oxides are multicomponent and as such there exists the need for an optimized chemical composition. For this we have to make individual targets with required chemical composition to use it in conventional thin film deposition techniques like PLD and sputtering. Instead, if we use separate targets for each of the cationic element and if separately control the power during the simultaneous sputtering process, then we can change the chemical composition by simply adjusting the sputtering power. This is what is done in co-sputtering technique. Eventhough there had some reports about thin film deposition using this technique, there was no reports about the use of this technique in TFT fabrication until very recent time. Hence in this work, co-sputtering has performed as a major technique for thin film deposition and TFT fabrication. PLD were also performed as it is a relatively new technique and allows the use high oxygen pressure during deposition. This helps to control the carrier density in the channel and also favours the smooth film surface. Both these properties are crucial in TFT.Zinc tin oxide material is interesting in the sense that it does not contain costly indium. Eventhough some works were already reported in ZTO based TFTs, there was no systematic study about ZTO thin film's various optoelectronic properties from a TFT manufacturing perspective. Attempts have made to analyse the ZTO films prepared by PLD and co-sputtering. As more type of cations present in the film, chances are high to form an amorphous phase. Zinc indium tin oxide is studied as a multicomponent oxide material suitable for TFT fabrication.
Resumo:
Among the large number of photothcrmal techniques available, photoacoustics assumes a very significant place because of its essential simplicity and the variety of applications it finds in science and technology. The photoacoustic (PA) effect is the generation of an acoustic signal when a sample, kept inside an enclosed volume, is irradiated by an intensity modulated beam of radiation. The radiation absorbed by the sample is converted into thermal waves by nonradiative de-excitation processes. The propagating thermal waves cause a corresponding expansion and contraction of the gas medium surrounding the sample, which in tum can be detected as sound waves by a sensitive microphone. These sound waves have the same frequency as the initial modulation frequency of light. Lock-in detection method enables one to have a sufficiently high signal to noise ratio for the detected signal. The PA signal amplitude depends on the optical absorption coefficient of the sample and its thermal properties. The PA signal phase is a function of the thermal diffusivity of the sample.Measurement of the PA amplitude and phase enables one to get valuable information about the thermal and optical properties of the sample. Since the PA signal depends on the optical and thennal properties of the sample, their variation will get reflected in the PA signal. Therefore, if the PA signal is collected from various points on a sample surface it will give a profile of the variations in the optical/thennal properties across the sample surface. Since the optical and thermal properties are affected by the presence of defects, interfaces, change of material etc. these will get reflected in the PA signal. By varying the modulation frequency, we can get information about the subsurface features also. This is the basic principle of PA imaging or PA depth profiling. It is a quickly expanding field with potential applications in thin film technology, chemical engineering, biology, medical diagnosis etc. Since it is a non-destructive method, PA imaging has added advantages over some of the other imaging techniques. A major part of the work presented in this thesis is concemed with the development of a PA imaging setup that can be used to detect the presence of surface and subsmface defects in solid samples.Determination of thermal transport properties such as thermal diffusivity, effusivity, conductivity and heat capacity of materials is another application of photothennal effect. There are various methods, depending on the nature of the sample, to determine these properties. However, there are only a few methods developed to determine all these properties simultaneously. Even though a few techniques to determine the above thermal properties individually for a coating can be found in literature, no technique is available for the simultaneous measurement of these parameters for a coating. We have developed a scanning photoacoustic technique that can be used to determine all the above thermal transport properties simultaneously in the case of opaque coatings such as paints. Another work that we have presented in this thesis is the determination of thermal effusivity of many bulk solids by a scanning photoacoustic technique. This is one of the very few methods developed to determine thermal effiisivity directly.
Resumo:
Sea surface temperature (SST) datasets have been generated from satellite observations for the period 1991–2010, intended for use in climate science applications. Attributes of the datasets specifically relevant to climate applications are: first, independence from in situ observations; second, effort to ensure homogeneity and stability through the time-series; third, context-specific uncertainty estimates attached to each SST value; and, fourth, provision of estimates of both skin SST (the fundamental measure- ment, relevant to air-sea fluxes) and SST at standard depth and local time (partly model mediated, enabling comparison with his- torical in situ datasets). These attributes in part reflect requirements solicited from climate data users prior to and during the project. Datasets consisting of SSTs on satellite swaths are derived from the Along-Track Scanning Radiometers (ATSRs) and Advanced Very High Resolution Radiometers (AVHRRs). These are then used as sole SST inputs to a daily, spatially complete, analysis SST product, with a latitude-longitude resolution of 0.05°C and good discrimination of ocean surface thermal features. A product user guide is available, linking to reports describing the datasets’ algorithmic basis, validation results, format, uncer- tainty information and experimental use in trial climate applications. Future versions of the datasets will span at least 1982–2015, better addressing the need in many climate applications for stable records of global SST that are at least 30 years in length.
Resumo:
The fluid flow of the liquid phase in the sol-gel-dip-coating process for SnO(2) thin film deposition is numerically simulated. This calculation yields useful information on the velocity distribution close to the substrate, where the film is deposited. The fluid modeling is done by assuming Newtonian behavior, since the linear relation between shear stress and velocity gradient is observed. Besides, very low viscosities are used. The fluid governing equations are the Navier-Stokes in the two dimensional form, discretized by the finite difference technique. Results of optical transmittance and X-ray diffraction on films obtained from colloidal suspensions with regular viscosity, confirm the substrate base as the thickest part of the film, as inferred from the numerical simulation. In addition, as the viscosity increases, the fluid acquires more uniform velocity distribution close to the substrate, leading to more homogenous and uniform films.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Tinplate is one of the most widely used food canning materials, however, there are significant problems related to the use of tinplate cans, such as alterations in sensory features affecting food quality and corrosion phenomena of the canning material. To avoid corrosion problems different methods have been used for the passivation of tinplate such protective lacquers or different kinds of corrosion inhibitors (chromate and dichromate). However, chromates and dichromates are extremely harmful to the environment and can cause carcinogenic tumors to humans. An option, protective coatings obtained by the sol-gel process, act as a physical barrier, which isolates the surface of metal protecting from the corrosive agents. The aim of this work is to study the influence of addition of cerium (IV) ions in the inorganic and organic part of sol-gel processing in the formation of hybrid coatings based on siloxane-PMMA on tin plate. The coatings were obtained by dip-coating technique and evaluated by open circuit and impedance measurements, linear polarization and polarization curves obtained in 3.5% NaCl solution. The results have clearly shown the improvement on the protective properties of the Ce 4+ modified film when added into the organic phase, which can be due to the formation of a more uniform and densely reticulated siloxane-PMMA film. © 2009 by NACE International.
Resumo:
Plasma electrolytic oxidation (PEO) is a coating procedure that utilises anodic oxidation in aqueous electrolytes above the dielectric breakdown voltage to produce oxide coatings that have specific properties. These conditions facilitate oxide formation under localised high temperatures and pressures that originate from short-lived microdischarges at sites over the metal surface and have fast oxide volume expansion. Anodic ZrO2 films were prepared by subjecting metallic zirconium to PEO in acid solutions (H2C 2O4 and H3PO4) using a galvanostatic DC regime. The ZrO2 microstructure was investigated in films that were prepared at different charge densities. During the anodic breakdown, an important change in the amplitude of the voltage oscillations at a specific charge density was observed (i.e., the transition charge density (Q T)). We verified that this transition charge is a monotonic function of both the current density and temperature applied during the anodisation, which indicated that Q T is an intrinsic response of this system. The oxide morphology and microstructure were characterised using SEM and X-ray diffraction experiments (XRD) techniques. X-ray diffraction analysis revealed that the change in voltage oscillation was correlated with oxide microstructure changes during the breakdown process. © 2012 Springer-Verlag Berlin Heidelberg.
Resumo:
These reports are the result of consultations which were conducted in 2008 in Aruba, Barbados, Netherlands Antilles, Dominican Republic, Guyana, Jamaica, Montserrat, Saint Lucia and Trinidad and Tobago. The objective was to obtain relevant information that would inform a Stern-type report where the economics of climate change would be examined for the Caribbean subregion. These reports will be complimented by future assessments of the costs of the “business as usual”, adaptation and mitigation responses to the potential impacts of climate change. It is anticipated that the information contained in each country report would provide a detailed account of the environmental profile and would, therefore, provide an easy point of reference for policymakers in adapting existing policy or in formulating new ones. ECLAC continues to be available to the CDCC countries to provide technical support in the area of sustainable development.