911 resultados para Short fibre composite
Resumo:
Polymer FBGs have advantages for sensing because of low Young's modulus, high temperature sensitivity, large strain range and so on. They are attractive for many niche applications such as structural health monitoring of composite materials, biochemical and biomedical sensing. While polymer FBGs have been developed for some time, polymer microfibre Bragg gratings are developed only recently and have shown to introduce some interesting features, e.g. increased pressure sensitivity to pressure / force and improved response time to humidity. We will report and discuss the recent work on polymer FBG and polymer microfibre Bragg gratings as well as their applications such as accelerometer, humidity sensor and force and pressure sensor. © 2015 OSA.
Resumo:
Optical fibre based sensors are transforming industry by permitting monitoring in hitherto inaccessible environments or measurement approaches that cannot be reproduced using conventional electronic sensors. A multitude of techniques have been developed to render the fibres sensitive to a wide range of parameters including: temperature, strain, pressure (static and dynamic), acceleration, rotation, gas type, and specific biochemical species. Constructed entirely of glass or polymer material, optical fibre devices like fibre gratings offer the properties: low loss, dielectric construction, small size, multiplexing, and so on [1-3]. In this paper, the authors will show the latest developing industrial applications, using polymer optical fibre (POF) devices, and comparing their performance with silica optical fibre devices. The authors address two pressing commercial requirements. The first concerns the monitoring of fuel level in civil aircraft. There is a strong motivation in the aerospace industry to move away from electrical sensors, especially in the fuel system. This is driven by the need to eliminate potential ignition hazards, the desire to reduce cabling weight and the need to mitigate the effects of lightning strikes in aircraft where the conventional metallic skin is increasingly being replaced by composite materials. In this case, the authors have developed pressure sensors based on a diaphragm in which a polymer fibre Bragg grating (POFBG) has been embedded [3]. These devices provide high pressure sensitivity enabling level measurement in the mm range. Also, it has developed an approach incorporating several such sensors which can compensate for temperature drifts and is insensitive to fluid density. Compared with silica fibre-based sensors, their performance is highly enhanced. Initial results have attracted the interest of Airbus from UK, who is keen to explore the potential of optical technology in commercial aircraft. The second concerns the monitoring of acoustic signals and vibration in the subsea environment, for applications in geophysical surveying and security (detection of unwanted craft or personnel). There is strong motivation to move away from electrical sensors due to the bulk of the sensor and associated cabling and the impossibility of monitoring over large distances without electrical amplification. Optical approaches like optical hydrophones [5] offer a means of overcoming these difficulties. In collaboration with Kongsberg from Norway, the authors will exploit the sensitivity improvements possible by using POF instead of silica fibre. These improvements will arise as a result of the much more compliant nature of POF compared to silica fibre (3 GPa vs 72 GPa, respectively). Essentially, and despite the strain sensitivity of silica and POFBGs being very similar, this renders the POF much more sensitive to the applied stress resulting from acoustic signals or vibration. An alternative way of viewing this is that the POF is better impedance-matched to the surrounding environment (water for the intended applications), because although its impedance is higher than that of water, it is nearly an order of magnitude smaller than that of silica. Finally, other future industrial applications will be presented and discussed, showing the vast range of the optical fiber devices in sensing applications.
Resumo:
A semi-batch pyrolysis process was used to recover samples carbon fibre and glass fibre from their respective wastes. The mechanical properties of the recovered fibres were tested and compared to those of virgin fibres, showing good retention of the fibre properties. The recovered fibres were then used to prepare new LDPE composite materials with commercial and laboratory-synthesized compatibilizers. Mild oxidation of the post-pyrolysis recovered fibres and the use of different compatibilizers gave significant improvements in the mechanical properties of the LDPE composites; however some of the manufactured composites made from recovered fibres had properties similar to those made from virgin fibres.
Resumo:
Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
This study investigates the effect of foam core density and skin type on the behaviour of sandwich panels as structural beams tested in four-point bending and axially compressed columns of varying slenderness and skin thickness. Bio-composite unidirectional flax fibre-reinforced polymer (FFRP) is compared to conventional glass-FRP (GFRP) as the skin material used in conjunction with three polyisocyanurate (PIR) foam cores with densities of 32, 64 and 96 kg/m3. Eighteen 1000 mm long flexural specimens were fabricated and tested to failure comparing the effects of foam core density between three-layer FFRP skinned and single-layer GFRP skinned panels. A total of 132 columns with slenderness ratios (kLe/r) ranging from 22 to 62 were fabricated with single-layer GFRP skins, and one-, three-, and five-layer FFRP skins for each of the three foam core densities. The columns were tested to failure in concentric axial compression using pinned-end conditions to compare the effects of each material type and panel height. All specimens had a foam core cross-section of 100x50 mm with 100 mm wide skins of equal thickness. In both flexural and axial loading, panels with skins comprised of three FFRP layers showed equivalent strength to those with a single GFRP layer for all slenderness ratios and core densities examined. Doubling the core density from 32 to 64 kg/m3 and tripling the density to 96 kg/m3 led to flexural strength increases of 82 and 213%, respectively. Both FFRP and GFRP columns showed a similar variety of failure modes related to slenderness. Low slenderness of 22-25 failed largely due to localized single skin buckling, while those with high slenderness of 51-61 failed primarily by global buckling followed by secondary skin buckling. Columns with intermediate slenderness experienced both localized and global failure modes. High density foam cores more commonly exhibited core shear failure. Doubling the core density of the columns resulted in peak axial load increases, across all slenderness ratios, of 73, 56, 72 and 71% for skins with one, three and five FFRP layers, and one GFRP layer, respectively. Tripling the core density resulted in respective peak load increases of 116, 130, 176 and 170%.
Resumo:
Carbon fibre reinforced polymers (CFRP) are increasingly being used in the aerospace, automotive and defence industry due to their high specific stiffness and good corrosion resistance. In a modern aircraft, 50-60% of its structure is made up of CFRP material while the remainder is mostly a combination of metallic alloys (typically aluminium or titanium alloys). Mechanical fastening (bolting or riveting) of CFRP and metallic components has thus created a pressing requirement of drilling several thousand holes per aircraft. Drilling of stacks in a single-shot not only saves time, but also ensures proper alignment when fasteners are inserted, achieving tighter geometric tolerances. However, this requirement poses formidable manufacturing challenges due to the fundamental differences in the material properties of CFRP and metals e.g. a drill bit entering into the stack encounters brittle and abrasive CFRP material as well as the plastic behaviour of the metallic alloy, making the drilling process highly non-linear.
Over the past few years substantial efforts have been made in this direction and majority of the research has tried to establish links between how the process parameters (feed, depth of cut, cutting speed), tooling (geometry, material and coating) and the wear of the cutting tool affect the hole quality. Similarly, multitudes of investigations have been conducted to determine the effects of non-traditional drilling methods (orbital, helical and vibration assisted drilling), cutting zone temperatures and efficiency of chip extraction on the hole quality and rate of tool wear during single shot drilling of CFRP/alloy stacks.
In a timely effort, this paper aims at reviewing the manufacturing challenges and barriers faced when drilling CFRP/alloy stacks and to summarise various factors influencing the drilling process while detailing the advances made in this fertile research area of single-shot drilling of stack materials. A survey of the key challenges associated with avoiding workpiece damage and the effect these challenges have on tool design and process optimisation is presented. An in depth critique of suitable hole making methods and their aptness for commercialisation follows. The paper concludes by summarising the future work required to achieve repeatable, high quality single shot drilled holes in CFRP/alloy stacks.
Resumo:
The predictive capability of high fidelity finite element modelling, to accurately capture damage and crush behaviour of composite structures, relies on the acquisition of accurate material properties, some of which have necessitated the development of novel approaches. This paper details the measurement of interlaminar and intralaminar fracture toughness, the non-linear shear behaviour of carbon fibre (AS4)/thermoplastic Polyetherketoneketone (PEKK) composite laminates and the utilisation of these properties for the accurate computational modelling of crush. Double-cantilever-beam (DCB), four-point end-notched flexure (4ENF) and Mixed-mode bending (MMB) test configurations were used to determine the initiation and propagation fracture toughness in mode I, mode II and mixed-mode loading, respectively. Compact Tension (CT) and Compact Compression (CC) test samples were employed to determine the intralaminar longitudinal tensile and compressive fracture toughness. V-notched rail shear tests were used to measure the highly non-linear shear behaviour, associated with thermoplastic composites, and fracture toughness. Corresponding numerical models of these tests were developed for verification and yielded good correlation with the experimental response. This also confirmed the accuracy of the measured values which were then employed as input material parameters for modelling the crush behaviour of a corrugated test specimen.
Resumo:
The search for new materials especially those possessing special properties continues at a great pace because of ever growing demands of the modern life. The focus on the use of intrinsically conductive polymers in organic electronic devices has led to the development of a totally new class of smart materials. Polypyrrole (PPy) is one of the most stable known conducting polymers and also one of the easiest to synthesize. In addition, its high conductivity, good redox reversibility and excellent microwave absorbing characteristics have led to the existence of wide and diversified applications for PPy. However, as any conjugated conducting polymer, PPy lacks processability, flexibility and strength which are essential for industrial requirements. Among various approaches to making tractable materials based on PPy, incorporating PPy within an electrically insulating polymer appears to be a promising method, and this has triggered the development of blends or composites. Conductive elastomeric composites of polypyrrole are important in that they are composite materials suitable for devices where flexibility is an important parameter. Moreover these composites can be moulded into complex shapes.
Resumo:
The low-strength concrete is defined as a concrete where the compressive cubic strength is less than 15 MPa. Since the beginning of the last century, many low-strength concrete buildings and bridges have been built all over the world. Being short of deeper study, composite sheets are prohibited in strengthening of low-strength reinforced concrete members (CECS 146; ACI 440). Moreover, there are few relevant information about the long-term behavior and durability of strengthened RC members. This fact undoubtedly limits the use of the composite materials in the strengthening applications, therefore, it is necessary to study the behaviours of low-strength concrete elements strengthened with composite materials (FRP) for the preservation of historic constructions and innovation in the strengthening technology. Deformability is one of criteria in the design of concrete structures, and this for functionality, durability and aesthetics reasons. Civil engineer possibly encounters more deflection problems in the structural design than any other type of problem. Many materials common in structural engineering such as wood, concrete and composite materials, suffer creep; if the creep phenomenon is taken into account, checks for serviceability limit state criteria can become onerous, because the creep deformation in these materials is in the same order of magnitude as the elastic deformation. The thesis presents the results of an experimental study on the long-term behavior of low-strength reinforced concrete beams strengthened with carbon fiber composite sheets (CFRP). The work has investigated the accuracy of the long-term deflection predictions made by some analytical procedures existing in literature, as well as by the most widely used design codes (Eurocode 2, ACI-318, ACI-435).
Resumo:
Fibre-optic components and systems are used in a wide variety of industrial, medical and communication applications and can be found in use everywhere in the modern world, from the bottom of the ocean to satellites in orbit. The field of fibre optics has seen rapid growth in the past few decades to become an essential enabling technology. However, much more work is needed to develop components and systems that can work at wavelengths in the short-wavelength infrared (SWIR) / mid-IR part of the spectrum (defined in this work as 1.5 – 4.5.
Resumo:
Automated fibre placement (AFP) enables the trajectory of unidirectional composite tape to be optimized, but laying down complex shapes with this technology can result in the introduction of defects. The aim of this experimental study is to investigate the influence of gaps and overlaps on the microstructure and tensile properties of carbon-epoxy laminates. First, a comparison between a hand-layup and AFP layup, draped and cured under the same conditions, shows equivalent microstructures and tensile properties. This provides the reference values for the study. Then, gap and overlap embedded defects (more or less severe) are introduced during manufacturing, on two cross-ply layups [(0°/(90°)5/0°] and [(90°/0°)2/90°]. Autoclave cure without a caul plate results in local thickness variation and microstructural changes which depend on the defect type. This has a strong influence on mechanical performance. Use of a caul plate avoids these variations and in this case embedded defects hardly affect tensile properties.
Resumo:
Fiber reinforced composite tanks provide a promising method of storage for liquid oxygen and hydrogen for aerospace applications. The inherent thermal fatigue of these vessels leads to the formation of microcracks, which allow gas phase leakage across the tank walls. In this dissertation, self-healing functionality is imparted to a structural composite to effectively seal microcracks induced by both mechanical and thermal loading cycles. Two different microencapsulated healing chemistries are investigated in woven glass fiber/epoxy and uni-weave carbon fiber/epoxy composites. Self-healing of mechanically induced damage was first studied in a room temperature cured plain weave E-glass/epoxy composite with encapsulated dicyclopentadiene (DCPD) monomer and wax protected Grubbs' catalyst healing components. A controlled amount of microcracking was introduced through cyclic indentation of opposing surfaces of the composite. The resulting damage zone was proportional to the indentation load. Healing was assessed through the use of a pressure cell apparatus to detect nitrogen flow through the thickness direction of the damaged composite. Successful healing resulted in a perfect seal, with no measurable gas flow. The effect of DCPD microcapsule size (51 um and 18 um) and concentration (0 - 12.2 wt%) on the self-sealing ability was investigated. Composite specimens with 6.5 wt% 51 um capsules sealed 67% of the time, compared to 13% for the control panels without healing components. A thermally stable, dual microcapsule healing chemistry comprised of silanol terminated poly(dimethyl siloxane) plus a crosslinking agent and a tin catalyst was employed to allow higher composite processing temperatures. The microcapsules were incorporated into a satin weave E-glass fiber/epoxy composite processed at 120C to yield a glass transition temperature of 127C. Self-sealing ability after mechanical damage was assessed for different microcapsule sizes (25 um and 42 um) and concentrations (0 - 11 vol%). Incorporating 9 vol% 42 um capsules or 11 vol% 25 um capsules into the composite matrix leads to 100% of the samples sealing. The effect of microcapsule concentration on the short beam strength, storage modulus, and glass transition temperature of the composite specimens was also investigated. The thermally stable tin catalyzed poly(dimethyl siloxane) healing chemistry was then integrated into a [0/90]s uniweave carbon fiber/epoxy composite. Thermal cycling (-196C to 35C) of these specimens lead to the formation of microcracks, over time, formed a percolating crack network from one side of the composite to the other, resulting in a gas permeable specimen. Crack damage accumulation and sample permeability was monitored with number of cycles for both self-healing and traditional non-healing composites. Crack accumulation occurred at a similar rate for all sample types tested. A 63% increase in lifetime extension was achieved for the self-healing specimens over traditional non-healing composites.