909 resultados para Sewage irrigation
Resumo:
A non-linear model is presented which optimizes the lay-out, as well as the design and management of trickle irrigation systems, to achieve maximum net benefit. The model consists of an objective function that maximizes profit at the farm level, subject to appropriate geometric and hydraulic constraints. It can be applied to rectangular shaped fields, with uniform or zero slope. The software used is the Gams-Minos package. The basic inputs are the crop-water-production function, the cost function and cost of system components, and design variables. The main outputs are the annual net benefit and pipe diameters and lengths. To illustrate the capability of the model, a sensitivity analysis of the annual net benefit for a citrus field is evaluated with respect to irrigated area, ground slope, micro-sprinkler discharge and shape of the field. The sensitivity analysis suggests that the greatest benefit is obtained with the smallest microsprinkler discharge, the greatest area, a square field and zero ground slope. The costs of the investment and energy are the components of the objective function that had the greatest effect in the 120 situations evaluated. (C) 1996 Academic Press Limited
Resumo:
The effects of anaerobic digestion and initial pH on the bioleaching of metals from sewage sludge were investigated in shake flask experiments. A strain of Acidithiobacillus thiooxidans was employed in the assays using secondary and anaerobic sludges, which resulted in similar solubilization yields of the metals chromium, copper, lead, nickel, and zinc for both the sludges investigated. The effect of initial pH (7.0 and 4.0) on metal bioleaching was assayed by using the anaerobic sludge inoculated with indigenous sulfur-oxidizing thiobacilli. Although the time required to reach the end of the experiment (final pH close to 1.0) was shortened at initial pH of 4.0, final metal solubilization was not significantly different for both initial pH values, resulting in higher solubilization yields for copper, nickel, and zinc (higher than 80%). Chromium and lead presented solubilization yields close to 50%. The results obtained in this work showed that the metal bioleaching process can be applied to sewage sludge regardless of the type of sludge and without the requirement of pH adjustment.
Resumo:
Aim To evaluate the effect of biomechanical preparation with different irrigating solutions and calcium hydroxide dressing in dog root canals containing bacterial endotoxin (lipopolysaccharides; LPS).Methodology One hundred and forty premolar roots from seven dogs were filled with Escherichia coli LPS for 10 days (three roots were lost during histological processing). The following irrigating solutions were used for biomechanical preparation: 1% (group I, n = 20), 2.5% (group II, n = 19) and 5% sodium hypochlorite (group III, n = 19), 2% chlorhexidine digluconate (group IV, n = 20) and physiological saline solution (group V, n = 19). In group VI (n = 20), the LPS solution was maintained in the root canal during the entire experiment and in group VII (n = 20), after biomechanical preparation with saline solution, the root canals were filled with a calcium hydroxide dressing (Calen; control). After 60 days, the animals were sacrificed and the following parameters of periapical disease were evaluated: (a) inflammatory infiltrate, (b) periodontal ligament thickness, (c) cementum resorption and (d) bone resorption. Scores were given and data were analysed statistically with the Kruskal-Wallis and Dunn tests (P < 0.05).Results Histopathological evaluation showed that groups I-VI had more inflammatory infiltrate, greater periodontal ligament thickening and greater cementum and bone resorption (P < 0.05) compared to group VII, which received the calcium hydroxide intracanal dressing.Conclusions Biomechanical preparation with the irrigating solutions did not inactivate the effects of the endotoxin but the calcium hydroxide intracanal dressing did appear to inactivate the effects induced by the endotoxin in vivo.
Resumo:
The chemical fractionation and bioleaching of Mn, At, Zn, Cu and Ti in municipal sewage sludge were investigated using Thiobacillus ferrooxidans as leaching microorganism. As a result of the bacterial activity, ORP increase and pH reduction were observed. Metal solubilization was accomplished only in experimental systems supplemented with energy source (Fe(II)). The solubilization efficiency approached similar to80% for Mn and Zn, 24% for Cu, 10% for At and 0.2% for Ti. The chemical fractionation of Mn, At, Zn, Cu and Ti was investigated using a five-step sequential extraction procedure employing KNO3. KF, Na4P2O7, EDTA and HNO3. The results show that the bioleaching process affected the partitioning of Mn and Zn, increasing its percentage of elution in the KNO3 fraction while reducing it in the KF, Na4P2O7 and EDTA fractions. No significant effect was detected on the partitioning of Cu and Al. However, quantitatively the metals Mn, Zn, Cu and At were extracted with higher efficiency after the bacterial activity. Titanium was unaffected by the bioleaching process in both qualitative and quantitative aspects. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effects of municipal sewage sludge solids concentration, leaching microorganisms (Thiobacillus thiooxidans or Thiobacillus ferrooxidans) and the addition of energy source (SO or Fe(II)) on the bioleaching of metals from sewage sludge has been investigated under laboratory conditions using shake flasks. The results show that metal solubilization was better accomplished if additional energy source is supplemented to the microorganisms and that T. thiooxidans furnishes, in general, more adequate conditions for the bioleaching than T. ferrooxidans. At a total solids concentration of 70 g L-1 (originally present in the sludge) pH drop and ORP increase are attenuated, so metal solubilization is negatively affected. Tt was also demonstrated that if lead (Pb) solubilization is to be achieved, than a special combination of microorganism/energy source must be applied.
Resumo:
The influence of four levels (25, 50, 75 and 100%) of Class A pan evaporation replenishment (PER) on the marketable yield and bioactive amine content of American lettuce (Lactuca sativa cv Lucy Brown) grown under greenhouse conditions and drip irrigation was investigated. Lettuce was planted in 1.20 m x 2.10 m plots in a completely randomised block design with three replications. Lowest fresh head weights and diameters were obtained at 25% PER. Highest marketable yields and fresh head weights were obtained at 100% PER; however, no significant difference was observed when using 75% PER. The fresh head diameter was smaller only when using 25% PER. Four amines were detected in lettuce grown under 100% PER, with a total content of 7.60 mg kg(-1). Spermidine was the prevalent amine, followed by putrescine, cadaverine and agmatine. Higher spermidine and cadaverine levels were observed in the outer layers of leaves than in the intermediate and inner leaves. The contents of every amine except agmatine increased with water stress; however, a significant difference was observed only between 100 and 25% PER. The concentrations of accumulated putrescine were not capable of negatively affecting the sensory quality of the lettuce. (c) 2005 Society of Chemical Industry.
Resumo:
The effect of copper and zinc ions on sulphur oxidation by Acidithiobacillus thiooxidans, strain SFR01, isolated from anaerobic sewage sludge was assessed, resulting in tolerance levels up to 20 and 200 mmol l(-1) for copper and zinc, respectively. The tolerance levels obtained were higher than the concentration of copper and zinc usually found in the collected sewage sludge. The tolerance levels obtained indicate no constraints for sludge bioleaching of those metals due to their toxicities to the indigenous A. thiooxidans.
Resumo:
The use of sewage sludge in agricultural land as a means of sludge disposal and recycling has been shown to be economical and suitable because of the presence of nutrients such as nitrogen and phosphorus. However, municipal sludges often contain high quantities of toxic metals and other compounds that must be removed for its safe use in agricultural soils. The biological leaching of metals from sewage sludges has been shown to be a promising technique for metal detoxifying in such complex matrix. The process efficiency is dependent on several physico-chemical parameters, such as total solids concentration, metal forms, pH-ORP, and temperature. Scale-up of the process has not yet been defined and is still pursuing the correct operational design. Current research involving the bioleaching of metals from sewage sludge and its application to land, which affects soil physical properties, are presented and discussed.
Resumo:
In the studied region, 35% of the soil collapses are related to leakage from sewage ducts. The paper describes the soils from this part of Brazil and a series of laboratory tests undertaken using water and domestic sewage fluid as the wetting agents. It is considered that the presence of soaps and detergents as recorded by the sodium concentration facilitates the densification of the soils and hence has a major effect on the surface settlement/collapse.
Resumo:
Two patterns of solubilization of metal ions resulting from bioleaching of sewage sludge by sulphur-oxidizing Thiobacillus spp. were established as a function of pH. Chromium and copper ions required a pH of 2-3 to initiate their solubilization, whereas nickel and zinc ions had their solubilization initiated at pH 6-6.5. The patterns obtained were independent of the sludge solids concentrations investigated (10, 17, 25, 32.5 and 40 g l(-1)).
Resumo:
Although research on the environmental impacts of using waste as a fertilizer is of great importance, the basic principle for using a product as fertilizer is that it should provide nutrients for plants without causing any harm to them. The objective of this study was to evaluate the agronomic traits (number of nodes, plant height, leaf number, yield, and protein content of grains) and the nutritional status of corn treated with sewage sludge. The experiment was conducted in the municipality of Jaboticabal in a Red Latosol. A randomized block design with four treatments (0, 55, 110, and 167.5 Mg ha(-1) of sewage sludge) and five repetitions was used. At 30 days after emergence (DAE), the dose of 110 Mg ha(-1) dry weight presented greater values for plant height, leaf number and stem diameter. At 60 DAE, the treatments did not affect the agronomic traits. No influence from the treatments tested was observed for protein content of grains and yield. The dose of 167.5 Mg ha(-1) showed greater weight of 100 seeds. All treatments showed nutritional imbalances. This study confirmed the agricultural potential of sewage sludge as a source of nutrients.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)