974 resultados para Septal hypertrophy
Resumo:
The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.
Resumo:
AIM To determine the relation between the extent and distribution of left ventricular hypertrophy and the degree of disturbance of regional relaxation and global left ventricular filling. METHODS Regional wall thickness (rWT) was measured in eight myocardial regions in 17 patients with hypertrophic cardiomyopathy, 12 patients with hypertensive heart disease, and 10 age matched normal subjects, and an asymmetry index calculated. Regional relaxation was assessed in these eight regions using regional isovolumetric relaxation time (rIVRT) and early to late peak filling velocity ratio (rE/A) derived from Doppler tissue imaging. Asynchrony of rIVRT was calculated. Doppler left ventricular filling indices were assessed using the isovolumetric relaxation time, the deceleration time of early diastolic filling (E-DT), and the E/A ratio. RESULTS There was a correlation between rWT and both rIVRT and rE/A in the two types of heart disease (hypertrophic cardiomyopathy: r = 0.47, p < 0.0001 for rIVRT; r = -0.20, p < 0.05 for rE/A; hypertensive heart disease: r = 0.21, p < 0.05 for rIVRT; r = -0.30, p = 0.003 for rE/A). The degree of left ventricular asymmetry was related to prolonged E-DT (r = 0. 50, p = 0.001) and increased asynchrony (r = 0.42, p = 0.002) in all patients combined, but not within individual groups. Asynchrony itself was associated with decreased E/A (r = -0.39, p = 0.01) and protracted E-DT (r = 0.69, p < 0.0001) and isovolumetric relaxation time (r = 0.51, p = 0.001) in all patients. These correlations were still significant for E-DT in hypertrophic cardiomyopathy (r = 0.56, p = 0.02) and hypertensive heart disease (r = 0.59, p < 0.05) and for isovolumetric relaxation time in non-obstructive hypertrophic cardiomyopathy (n = 8, r = 0.87, p = 0.005). CONCLUSIONS Non-invasive ultrasonographic examination of the left ventricle shows that in both hypertrophic cardiomyopathy and hypertensive heart disease, the local extent of left ventricular hypertrophy is associated with regional left ventricular relaxation abnormalities. Asymmetrical distribution of left ventricular hypertrophy is indirectly related to global left ventricular early filling abnormalities through regional asynchrony of left ventricular relaxation.
Resumo:
Ablation of ventricular tachycardia (VT) by conventional radiofrequency ablation can be impossible if the ventricular wall at the targeted ablation site is very thick, as for example the ventricular septum. We present a case of a patient with incessant, non-sustained slow VT originating from the septal part of the lower outflow tracts. Radiofrequency catheter ablation from both ventricles as well as from the anterior cardiac vein were not successful. Both high power radiofrequency ablation and bipolar radiofrequency ablation neither were successfull. Finally, ethanol ablation of the first septal perforator successfully terminated arrhythmia. We discuss the possibilities to overcome failed conventional radiofrequency VT ablation of a septal focus.
Resumo:
In more than 95% of patients with atrioventricular nodal reentrant tachycardia (AVNRT), curative treatment can be achieved with selective ablation of the slow pathway in the right-sided septum. We report a patient with typical AVNRT who had failed attempts to perform conventional right septal ablation of the slow as well as of the fast pathway and finally underwent successful ablation of the fast pathway on the left side of the interatrial septum using a transseptal approach.
Resumo:
BACKGROUND Synovial explants furnish an in-situ population of mesenchymal stem cells for the repair of articular cartilage. Although bone morphogenetic protein 2 (BMP-2) induces the chondrogenesis of bovine synovial explants, the cartilage formed is neither homogeneously distributed nor of an exclusively hyaline type. Furthermore, the downstream differentiation of chondrocytes proceeds to the stage of terminal hypertrophy, which is inextricably coupled with undesired matrix mineralization. With a view to optimizing BMP-2-induced chondrogenesis, the modulating influences of fibroblast growth factor 2 (FGF-2) and transforming growth factor beta 1 (TGF-ß1) were investigated. METHODOLOGY/PRINCIPAL FINDINGS Explants of bovine calf metacarpal synovium were exposed to BMP-2 (200 ng/ml) for 4 (or 6) weeks. FGF-2 (10 ng/ml) or TGF-ß1 (10 ng/ml) was introduced at the onset of incubation and was present either during the first week of culturing alone or throughout its entire course. FGF-2 enhanced the BMP-2-induced increase in metachromatic staining for glycosaminoglycans (GAGs) only when it was present during the first week of culturing alone. TGF-ß1 enhanced not only the BMP-2-induced increase in metachromasia (to a greater degree than FGF-2), but also the biochemically-assayed accumulation of GAGs, when it was present throughout the entire culturing period; in addition, it arrested the downstream differentiation of cells at an early stage of hypertrophy. These findings were corroborated by an analysis of the gene- and protein-expression levels of key cartilaginous markers and by an estimation of individual cell volume. CONCLUSIONS/SIGNIFICANCE TGF-ß1 enhances the BMP-2-induced chondrogenesis of bovine synovial explants, improves the hyaline-like properties of the neocartilage, and arrests the downstream differentiation of cells at an early stage of hypertrophy. With the prospect of engineering a mature, truly articular type of cartilage in the context of clinical repair, our findings will be of importance in fine-tuning the stimulation protocol for the optimal chondrogenic differentiation of synovial explants.
Resumo:
In response to stress, the heart undergoes a remodeling process associated with cardiac hypertrophy that eventually leads to heart failure. A-kinase anchoring proteins (AKAPs) have been shown to coordinate numerous prohypertrophic signaling pathways in cultured cardiomyocytes. However, it remains to be established whether AKAP-based signaling complexes control cardiac hypertrophy and remodeling in vivo. In the current study, we show that AKAP-Lbc assembles a signaling complex composed of the kinases PKN, MLTK, MKK3, and p38α that mediates the activation of p38 in cardiomyocytes in response to stress signals. To address the role of this complex in cardiac remodeling, we generated transgenic mice displaying cardiomyocyte-specific overexpression of a molecular inhibitor of the interaction between AKAP-Lbc and the p38-activating module. Our results indicate that disruption of the AKAP-Lbc/p38 signaling complex inhibits compensatory cardiomyocyte hypertrophy in response to aortic banding-induced pressure overload and promotes early cardiac dysfunction associated with increased myocardial apoptosis, stress gene activation, and ventricular dilation. Attenuation of hypertrophy results from a reduced protein synthesis capacity, as indicated by decreased phosphorylation of 4E-binding protein 1 and ribosomal protein S6. These results indicate that AKAP-Lbc enhances p38-mediated hypertrophic signaling in the heart in response to abrupt increases in the afterload.
Resumo:
In previous studies, we found that the improved contractile ability of cardiac myocytes from patients who have had left ventricular assist device (LVAD) support was due to a number of beneficial changes, most notably in calcium handling (increased sarcoplasmic reticulum calcium binding and uptake), improved integrity of cell membranes due to phospholipid reconstruction (reduced lysophospholipid content), and an upregulation of adrenoreceptors (increased adrenoreceptor numbers). However, in the case presented here, there was no increase in adrenoreceptor number, which is something that we usually find in core tissue at the time of LVAD removal or organ transplantation; also, there was no homogeneous postassist device receptor distribution. However, the patient was well maintained for 10 months following LVAD implantation, until a donor organ was available, regardless of the lack of adrenoreceptor improvement. We conclude from these studies that cardiac recovery is the result of the initiation of multiple repair mechanisms, and that the lack of expected changes, in this case increased adrenoreceptors, is not always an accurate indicator of anticipated outcome. We suggest that interventions and strategies have to consider multiple, beneficial changes due to unloading and target a number of biochemical and structural areas to produce improvement, even if not all of these improvements occur.
Resumo:
BACKGROUND: Obesity is a systemic disorder associated with an increase in left ventricular mass and premature death and disability from cardiovascular disease. Although bariatric surgery reverses many of the hormonal and hemodynamic derangements, the long-term collective effects on body composition and left ventricular mass have not been considered before. We hypothesized that the decrease in fat mass and lean mass after weight loss surgery is associated with a decrease in left ventricular mass. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7+/-1.7 kg/m(2)) with medically controlled hypertension underwent bariatric surgery. Left ventricular mass and plasma markers of systemic metabolism, together with body mass index (BMI), waist and hip circumferences, body composition (fat mass and lean mass), and resting energy expenditure were measured at 0, 3, 9, 12, and 24 months. RESULTS: Left ventricular mass continued to decrease linearly over the entire period of observation, while rates of weight loss, loss of lean mass, loss of fat mass, and resting energy expenditure all plateaued at 9 [corrected] months (P <.001 for all). Parameters of systemic metabolism normalized by 9 months, and showed no further change at 24 months after surgery. CONCLUSIONS: Even though parameters of obesity, including BMI and body composition, plateau, the benefits of bariatric surgery on systemic metabolism and left ventricular mass are sustained. We propose that the progressive decrease of left ventricular mass after weight loss surgery is regulated by neurohumoral factors, and may contribute to improved long-term survival.
Resumo:
Tetralogy of Fallot (TOF) is one of the most common congenital heart malformations comprising a ventricular septal defect, right ventricular outflow tract obstruction, right ventricular hypertrophy, and overriding aorta. A rare variant includes pulmonary atresia and major aortopulmonary collateral arteries. Altered hemodynamics within the functional single-ventricle results in turbulent flow and predisposes to endocardial vegetation formation which may consequently lead to thromboembolic events. We present a rare case of an adult survivor of uncorrected TOF with pulmonary atresia.
Resumo:
Lymphoid organ hypertrophy is a hallmark of localized infection. During the inflammatory response, massive changes in lymphocyte recirculation and turnover boost lymphoid organ cellularity. Intriguingly, the exact nature of these changes remains undefined to date. Here, we report that hypertrophy of Salmonella-infected Peyer's patches (PPs) ensues from a global "shutdown" of lymphocyte egress, which traps recirculating lymphocytes in PPs. Surprisingly, infection-induced lymphocyte sequestration did not require previously proposed mediators of lymphoid organ shutdown including type I interferon receptor and CD69. In contrast, following T-cell receptor-mediated priming, CD69 was essential to selectively block CD4+ effector T-cell egress. Our findings segregate two distinct lymphocyte sequestration mechanisms, which differentially rely on intrinsic modulation of lymphocyte egress capacity and inflammation-induced changes in the lymphoid organ environment.
Resumo:
A 14-year-old Thoroughbred gelding was presented for chronic colic and weight loss. Transcutaneous and transrectal abdominal ultrasonography revealed distended, thickened small intestine with primary thickening of the muscularis and a focally more thickened loop with an echoic structure crossing the wall from the mucosa to the serosa. Visualization of diffuse thickening of the muscularis (muscular hypertrophy of the small intestine) and a focal lesion (pseudodiverticulum) helped clinicians make informed decisions. This case illustrates the importance of transabdominal and transrectal ultrasonography in horses with chronic colic and the relevance of considering the abnormalities in layering pattern of the intestinal wall.
Resumo:
AIM It is unknown how the heart distinguishes various overloads, such as exercise or hypertension, causing either physiological or pathological hypertrophy. We hypothesize that alpha-calcitonin-gene-related peptide (αCGRP), known to be released from contracting skeletal muscles, is key at this remodelling. METHODS The hypertrophic effect of αCGRP was measured in vitro (cultured cardiac myocytes) and in vivo (magnetic resonance imaging) in mice. Exercise performance was assessed by determination of maximum oxygen consumption and time to exhaustion. Cardiac phenotype was defined by transcriptional analysis, cardiac histology and morphometry. Finally, we measured spontaneous activity, body fat content, blood volume, haemoglobin mass and skeletal muscle capillarization and fibre composition. RESULTS While αCGRP exposure yielded larger cultured cardiac myocytes, exercise-induced heart hypertrophy was completely abrogated by treatment with the peptide antagonist CGRP(8-37). Exercise performance was attenuated in αCGRP(-/-) mice or CGRP(8-37) treated wild-type mice but improved in animals with higher density of cardiac CGRP receptors (CLR-tg). Spontaneous activity, body fat content, blood volume, haemoglobin mass, muscle capillarization and fibre composition were unaffected, whereas heart index and ventricular myocyte volume were reduced in αCGRP(-/-) mice and elevated in CLR-tg. Transcriptional changes seen in αCGRP(-/-) (but not CLR-tg) hearts resembled maladaptive cardiac phenotype. CONCLUSIONS Alpha-calcitonin-gene-related peptide released by skeletal muscles during exercise is a hitherto unrecognized effector directing the strained heart into physiological instead of pathological adaptation. Thus, αCGRP agonists might be beneficial in heart failure patients.
Resumo:
Atrial septal defects (ASDs) are one of the most frequent congenital cardiac malformations, accounting for about 8-10% of all congenital heart defects. The prevalence of pulmonary arterial hypertension (PAH) in adults with an ASD is 8-10%. Different clinical PAH scenarios can be encountered. At one end of the spectrum are adults with no or only mild pulmonary vascular disease and a large shunt. These are patients who can safely undergo shunt closure. In the elderly, mild residual pulmonary hypertension after shunt closure is the rule. At the other end of the spectrum are adults with severe, irreversible pulmonary vascular disease, shunt reversal and chronic cyanosis, that is, Eisenmenger syndrome. These are patients who need to be managed medically. The challenge is to properly classify ASD patients with PAH falling in between the two ends of the spectrum as the ones with advanced, but reversible pulmonary vascular disease amenable to repair, versus the ones with progressive pulmonary vascular disease not responding to shunt closure. There are concerns that adults with progressive pulmonary vascular disease have worse outcomes after shunt closure than patients not undergoing shunt closure. Due to the correlation of pulmonary vascular changes and pulmonary hemodynamics, cardiac catheterization is used in the decision-making process. It is important to consider the hemodynamic data in the context of the clinical picture, the defect anatomy and further noninvasive tests when evaluating the option of shunt closure in these patients.