942 resultados para Semisolid Structure Formation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cassini flyby of Jupiter occurred at a time near solar maximum. Consequently, the pre-Jupiter data set reveals clear and numerous transient perturbations to the Parker Spiral solar wind structure. Limited plasma data are available at Cassini for this period due to pointing restrictions imposed on the instrument. This renders the identification of the nature of such structures ambiguous, as determinations based on the magnetic field data alone are unreliable. However, a fortuitous alignment of the planets during this encounter allowed us to trace these structures back to those observed previously by the Wind spacecraft near the Earth. Of the phenomena that we are satisfactorily able to trace back to their manifestation at 1 AU, two are identified as being due to interplanetary coronal mass ejections. One event at Cassini is shown to be a merged interaction region, which is formed from the compression of a magnetic cloud by two anomalously fast solar wind streams. The flux-rope structure associated with this magnetic cloud is not as apparent at Cassini and has most likely been compressed and deformed. Confirmation of the validity of the ballistic projections used here is provided by results obtained from a one-dimensional magnetohydrodynamic projection of solar wind parameters measured upstream near the Earth. It is found that when the Earth and Cassini are within a few tens of degrees in heliospheric longitude, the results of this one-dimensional model predict the actual conditions measured at 5 AU to an impressive degree. Finally, the validity of the use of such one-dimensional projections in obtaining quasi-solar wind parameters at the outer planets is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gallaborane (GaBH6, 1), synthesized by the metathesis of LiBH4 with [H2GaCl]n at ca. 250 K, has been characterized by chemical analysis and by its IR and 1H and 11B NMR spectra. The IR spectrum of the vapor at low pressure implies the presence of only one species, viz. H2Ga(μ-H)2BH2, with a diborane-like structure conforming to C2v symmetry. The structure of this molecule has been determined by gas-phase electron diffraction (GED) measurements afforced by the results of ab initio molecular orbital calculations. Hence the principal distances (rα in Å) and angles ( α in deg) are as follows: r(Ga•••B), 2.197(3); r(Ga−Ht), 1.555(6); r(Ga−Hb), 1.800(6); r(B−Ht), 1.189(7); r(B−Hb), 1.286(7); Hb−Ga−Hb, 71.6(4); and Hb−B−Hb, 110.0(5) (t = terminal, b = bridging). Aggregation of the molecules occurs in the condensed phases. X-ray crystallographic studies of a single crystal at 110 K reveal a polymeric network with helical chains made up of alternating pseudotetrahedral GaH4 and BH4 units linked through single hydrogen bridges; the average Ga•••B distance is now 2.473(7) Å. The compound decomposes in the condensed phases at temperatures exceeding ca. 240 K with the formation of elemental Ga and H2 and B2H6. The reactions with NH3, Me3N, and Me3P are also described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is known that germin, which is a marker of the onset of growth in germinating wheat, is an oxalate oxidase, and also that germins possess sequence similarity with legumin and vicilin seed storage proteins. These two pieces of information have been combined in order to generate a 3D model of germin based on the structure of vicilin and to examine the model with regard to a potential oxalate oxidase active site. A cluster of three histidine residues has been located within the conserved beta-barrel structure. While there is a relatively low level of overall sequence similarity between the model and the vicilin structures, the conservation of amino acids important in maintaining the scaffold of the beta-barrel lends confidence to the juxtaposition of the histidine residues. The cluster is similar structurally to those found in copper amine oxidase and other proteins, leading to the suggestion that it defines a metal-binding location within the oxalate oxidase active site. It is also proposed that the structural elements involved in intermolecular interactions in vicilins may play a role in oligomer formation in germin/oxalate oxidase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The total calcium level of raw skimmed milk was reduced by 10, 19, 29, 40 and 51% using Duolite® ion-exchange resin. The products were examined for concentrations of ionic calcium, sodium and potassium and the pH, ethanol stability, micelle diameter and ζ-potential were also measured. Ionic calcium decreased with removal of calcium and pH increased. Calcium removal resulted in an increase in the ethanol stability from 88% to above 100%. Casein micelle diameter increased as calcium was removed. The ζ-potential of the skimmed bulk milk was -24.4 mV, gradually becoming more negative with calcium removal to -30.6 mV after 51% calcium removal. The milk became more translucent as calcium was removed. To investigate the reversibility of this process, calcium chloride was added back to the depleted samples to restore their original total calcium content. At 51% removal, restoration of the total calcium level resulted in formation of clots. At levels of 10 and 19% calcium removal, the ethanol stability remained above 100%, but at higher levels of calcium removal the alcohol stability was adversely affected when the calcium was added back. Adding back calcium resulted in partial restoration of the original casein micelle diameter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms underlying the formation of necrotic regions within avascular tumours are not well understood. In this paper, we examine the relative roles of nutrient deprivation and of cell death, from both the proliferating phase of the cell cycle via apoptosis and from the quiescent phase via necrosis, in changing the structure within multicellular tumour spheroids and particularly the accumulation of dead cell material in the centre. A mathematical model is presented and studied that accounts for nutrient diffusion, changes in cell cycling rates, the two different routes to cell death as well as active motion of cells and passive motion of the dead cell material. In studying the accumulation of dead cell matter we do not distinguish between the route by which each was formed. The resulting mathematical model is examined for a number of scenarios. Results show that in many cases the size of the necrotic core is closely correlated with low levels in nutrient concentration. However, in certain cases, particularly where the rate of necrosis is large, the resulting necrotic core can lead to regions of non-negligible nutrient concentration-dependent upon the mode of cell death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The degradation of bisphenol A and nonylphenol involves the unusual rearrangement of stable carboncarbon bonds. Some nonylphenol isomers and bisphenol A possess a quaternary alpha-carbon atom as a common structural feature. The degradation of nonylphenol in Sphingomonas sp. strain TTNP3 occurs via a type II ipso substitution with the presence of a quaternary alpha-carbon as a prerequisite. We report here a new degradation pathway of bisphenol A. Consequent to the hydroxylation at position C-4, according to a type 11 ipso substitution mechanism, the C-C bond between the phenolic moiety and the isopropyl group of bisphenol A is broken. Besides the formation of hydroquinone and 4-(2-hydroxypropan-2-yl) phenol as the main metabolites, further compounds resulting from molecular rearrangements consistent with a carbocationic intermediate were identified. Assays with resting cells or cell extracts of Sphingomonas sp. strain TTNP3 under an 18 02 atmosphere were performed. One atom of 180, was present in hydroquinone, resulting from the monooxygenation of bisphenol A and nonylphenol. The monooxygenase activity was dependent on both NADPH and flavin adenine dinucleotide. Various cytochrome P450 inhibitors had identical inhibition effects on the conversion of both xenobiotics. Using a mutant of Sphingomonas sp. strain TTNP3, which is defective for growth on nonylphenol, we demonstrated that the reaction is catalyzed by the same enzymatic system. In conclusion, the degradation of bisphenol A and nonylphenol is initiated by the same monooxygenase, which may also lead to ipso substitution in other xenobiotics containing phenol with a quaternary a-carbon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Snake venoms contain a number of proteins that interact with components of the haemostatic system that promote or inhibit events leading to blood- clot formation. The snake- venom protein convulxin ( Cvx) binds glycoprotein ( GP) VI, the platelet receptor for collagen, and triggers signal transduction. Here, the 2.7 Angstrom resolution crystal structure of Cvx is presented. In common with other members of this snake-venom protein family, Cvx is an alphabeta- heterodimer and conforms to the C- type lectin- fold topology. Comparison with other family members allows a set of Cvx residues that form a concave surface to be putatively implicated in GPVI binding. Unlike other family members, with the exception of flavocetin- A ( FL- A), Cvx forms an (alphabeta)(4) tetramer. This oligomeric structure is consistent with Cvx clustering GPVI molecules on the surface of platelets and as a result promoting signal transduction activity. The Cvx structure and the location of the putative binding sites suggest a model for this multimeric signalling assembly.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Treatment of [UO2(OTf)(2)] or [UO2I2(thf)(3)] with 1 equiv. of CyMe4BTBP in anhydrous acetonitrile led to the formation of [UO2(CyMe4BTBP)(OTf)(2)] (1) and [UO2(CyMe4BTBP)I-2] (2) which crystallized as the cationic forms [UO2(CyMe4BTBP)(py)][OTf](2) (3) and [UO2I(CyMe4BTBP)][I] (4) in pyridine and acetonitrile, respectively. These compounds are unique examples of structurally characterized actinide complexes with a BTBP molecule; this ligand adopts a planar conformation in the equatorial plane of the {UO2}(2+) ion. In pyridine, 1 is dissociated into [UO2(OTf)(2)(PY)(3)] and free CyMe4BTBP and the thermodynamic parameters (K, Delta H, Delta S) of this equilibrium have been determined by H-1 NMR spectroscopy. The ethoxide derivative [UO2(OEt)(CyMe4BTBP)][OTf] (5) crystallized from a solution of I in a mixture of ethanol and acetone under air, and the dinuclear mu-oxo complex [{UO2(CyMe4BTBP)}(2)(mu-O)][I](2) (6) was obtained from [UO2I(thf)(2.7)] and CyMe4BTBP. The crystal structures of 6 and of the analogous derivatives [{UO2(py)(4)}(2)(mu-O)][I](2)(7) and [{UO2(TPTZ)(py)}(2)(mu-O)][I-3](2)(8) exhibit a flexible [{UO2}-O-{UO2}](2+) moiety.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three new supramolecular assemblies of co-crystallized metal complexes and aliphatic dicarboxylic acids, {[Cu(pic)(2)(H2O)(2)](H(2)mal)}(n) (1), {[Cu(pic)(2)(H2O)(2)](H(2)mal)(2)(H2O)(2)}(n) (2) and {[Cu(pic)(2)(MeOH)](H(2)succ)}(n) (3) {Hpic = 2-picolinic acid, H(2)mal = malonic acid and H(2)succ = succinic acid} have been synthesized and characterized by X-ray single-crystal structure determination. The crystal packings of the complexes reveal that supramolecular associations of the monomeric complex units lead to the formation of layers through hydrogen bonding. In all the complexes, the dicarboxylic acid units connect the 2-D layers to act as pillars. The interaction between water molecules and the dicarboxylic acid plays an important role in the overall supramolecular assembly. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The self-assembly into wormlike micelles of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer Pluronic P84 in aqueous salt solution (2 M NaCl) has been studied by rheology, small-angle X-ray and neutron scattering (SAXS/SANS), and light scattering. Measurements of the flow curves by controlled stress rheometry indicated phase separation under flow. SAXS on solutions subjected to capillary flow showed alignment of micelles at intermediate shear rates, although loss of alignment was observed for high shear rates. For dilute solutions, SAXS and static light scattering data on unaligned samples could be superposed over three decades in scattering vector, providing unique information on the wormlike micelle structure over several length scales. SANS data provided information on even shorter length scales, in particular, concerning "blob" scattering from the micelle corona. The data could be modeled based on a system of semiflexible self-avoiding cylinders with a circular cross-section, as described by the wormlike chain model with excluded volume interactions. The micelle structure was compared at two temperatures close to the cloud point (47 degrees C). The micellar radius was found not to vary with temperature in this region, although the contour length increased with increasing temperature, whereas the Kuhn length decreased. These variations result in an increase of the low-concentration radius of gyration with increasing temperature. This was consistent with dynamic light scattering results, and, applying theoretical results from the literature, this is in agreement with an increase in endcap energy due to changes in hydration of the poly(ethylene oxide) blocks as the temperature is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of eight synthetic self-assembling terminally blocked tripeptides have been studied for gelation. Some of them form gels in various aromatic solvents including benzene, toluene, xylene, and chlorobenzene. It has been found that the protecting groups play an important role in the formation of organogels. It has been observed that, if the C-terminal has been changed from methyl ester to ethyl ester the gelation property does not change significantly (keeping the N-terminal protecting group same), while the change of the protecting group from ethyl ester to isopropyl ester completely abolishes the gelation property. Similarly, keeping the identical C-terminal protecting group (methyl ester) the results of the gelation study indicate that the substitution of N-terminal protection Boc-(tert-butyloxycarbonyl) to Cbz-(benzyloxycarbonyl) does change the gelation property insignificantly, while the change from Boc- to pivaloyl (Piv-) or acetyl (Ac-) group completely eliminates the gelation property. Morphological studies of the dried gels of two of the peptides indicate the presence of an entangled nano-fibrillar network that might be responsible for gelation. FTIR studies of the gels demonstrate that an intermolecular hydrogen bonding network is formed during gelation. Results of X-ray powder diffraction studies for these gelator peptides in different states (dried gels, gel, and bulk solids) reflected that the structure in the wet gel is distinctly different from the dried gel and solid state structures. Single crystal X-ray diffraction studies of a non-gelator peptide, which is structurally similar to the gelator molecules reveal that the peptide forms an antiparallel beta-sheet structure in crystals. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies show that the beta-turn structure of tetrapeptide I, Boc-Gly-Phe-Aib-Leu-OMe (Aib: alpha-amino isobutyric acid) self-assembles to a supramolecular helix through intermolecular hydrogen bonding along the crystallographic a axis. By contrast the beta-turn structure of an isomeric tetrapeptide II, Boc-Gly-Leu-Aib-Phe-OMe self-assembles to a supramolecular beta-sheet-like structure via a two-dimensional (a, b axis) intermolecular hydrogen bonding network and pi-pi interactions. FT-IR studies of the peptides revealed that both of them form intermolecularly hydrogen bonded supramolecular structures in the solid state. Field emission scanning electron micrographs (FE-SEM) of the dried fibrous materials of the peptides show different morphologies, non-twisted filaments in case of peptide I and non-twisted filaments and ribbon-like structures in case of peptide II.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal X-ray diffraction studies and solvent dependent NMR titration reveal that the designed pepticles I and 11, Boc-Xx(1)-Aib(2)-Yy(3)-NH(CH2)(2)NH-Yy(3)-Aib(2)-Xx(1)-Boc, where Xx and Yy are lie and Leu in peptide I and Leu and Val in peptide 11, respectively, fold into a turn-linker-turn (T-L-T) conformation both in the solid state and in solution. In the crystalline state the T-L-T foldamers; of peptide I and II self-assemble to form a three-dimensional framework of channels. The insides of the channels are hydrophilic and found to contain solvent CHCl3 hydrogen bonded to exposed C=O of Aib located at the turn regions. (c) 2008 Elsevier B.V. All rights reserved.