927 resultados para Semi-solid state
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"June 1961 (OIT Issuance Date)."
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Transportation Systems Center, Cambridge, Mass.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
"Contract AT(11-1)-229."
Resumo:
"Contract AT-30-1-GEN-366."
Resumo:
Cover title.
Resumo:
Mode of access: Internet.
Resumo:
Microfilmed for preservation
Resumo:
Mode of access: Internet.
Resumo:
"January 1961."
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
In cold-chamber high-pressure die castings (HPDC), the microstructure consists of coarse externally solidified crystals (ESCs) that are commonly observed in the central region of cross sections. In the present work, controlled laboratory scale casting experiments have been conducted with particular emphasis on the flow and solidification conditions. An A356 aluminum alloy was used to produce castings by pouring semi-solid metal through a steel die. Microstructures similar to those encountered in HPDC have been produced and the resulting microstructure is found to depend on the melt and die temperature: (1) the fraction of ESCs determines the extent of migration to the central region; (2) a maximum packing determines the area fraction of ESCs in the center; and (3) the die temperature affects the position of the ESCs-a higher die temperature can induce a displaced ESC distribution. It is found that the n-figration of crystals to the central region requires a flow, which is constrained at all melt/die interfaces. Furthermore, potential lift mechanisms are discussed. An assessment of the Saffman lift force on individual particles shows it has no significant effect on the migration of ESCs.