929 resultados para Semantic Space


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We focus on full-rate, fast-decodable space–time block codes (STBCs) for 2 x 2 and 4 x 2 multiple-input multiple-output (MIMO) transmission. We first derive conditions and design criteria for reduced-complexity maximum-likelihood (ML) decodable 2 x 2 STBCs, and we apply them to two families of codes that were recently discovered. Next, we derive a novel reduced-complexity 4 x 2 STBC, and show that it outperforms all previously known codes with certain constellations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 2×2 MIMO profiles included in Mobile WiMAX specifications are Alamouti’s space-time code (STC) fortransmit diversity and spatial multiplexing (SM). The former hasfull diversity and the latter has full rate, but neither of them hasboth of these desired features. An alternative 2×2 STC, which is both full rate and full diversity, is the Golden code. It is the best known 2×2 STC, but it has a high decoding complexity. Recently, the attention was turned to the decoder complexity, this issue wasincluded in the STC design criteria, and different STCs wereproposed. In this paper, we first present a full-rate full-diversity2×2 STC design leading to substantially lower complexity ofthe optimum detector compared to the Golden code with only a slight performance loss. We provide the general optimized form of this STC and show that this scheme achieves the diversitymultiplexing frontier for square QAM signal constellations. Then, we present a variant of the proposed STC, which provides a further decrease in the detection complexity with a rate reduction of 25% and show that this provides an interesting trade-off between the Alamouti scheme and SM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a description of the role of definitional verbal patterns for the extraction of semantic relations. Several studies show that semantic relations can be extracted from analytic definitions contained in machine-readable dictionaries (MRDs). In addition, definitions found in specialised texts are a good starting point to search for different types of definitions where other semantic relations occur. The extraction of definitional knowledge from specialised corpora represents another interesting approach for the extraction of semantic relations. Here, we present a descriptive analysis of definitional verbal patterns in Spanish and the first steps towards the development of a system for the automatic extraction of definitional knowledge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a method for extracting semantic informationfrom online music discussion forums is proposed. The semantic relations are inferred from the co-occurrence of musical concepts in forum posts, using network analysis. The method starts by defining a dictionary of common music terms in an art music tradition. Then, it creates a complex network representation of the online forum by matchingsuch dictionary against the forum posts. Once the complex network is built we can study different network measures, including node relevance, node co-occurrence andterm relations via semantically connecting words. Moreover, we can detect communities of concepts inside the forum posts. The rationale is that some music terms are more related to each other than to other terms. All in all, this methodology allows us to obtain meaningful and relevantinformation from forum discussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple-input multiple-output (MIMO) techniques have become an essential part of broadband wireless communications systems. For example, the recently developed IEEE 802.16e specifications for broadband wireless access include three MIMOprofiles employing 2×2 space-time codes (STCs), and two of these MIMO schemes are mandatory on the downlink of Mobile WiMAX systems. One of these has full rate, and the other has full diversity, but neither of them has both of the desired features. The third profile, namely, Matrix C, which is not mandatory, is both a full rate and a full diversity code, but it has a high decoder complexity. Recently, the attention was turned to the decodercomplexity issue and including this in the design criteria, several full-rate STCs were proposed as alternatives to Matrix C. In this paper, we review these different alternatives and compare them to Matrix C in terms of performances and the correspondingreceiver complexities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silver Code (SilC) was originally discovered in [1–4] for 2×2 multiple-input multiple-output (MIMO) transmission. It has non-vanishing minimum determinant 1/7, slightly lower than Golden code, but is fast-decodable, i.e., it allows reduced-complexity maximum likelihood decoding [5–7]. In this paper, we present a multidimensional trellis-coded modulation scheme for MIMO systems [11] based on set partitioning of the Silver Code, named Silver Space-Time Trellis Coded Modulation (SST-TCM). This lattice set partitioning is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding, while the branch metrics are computed by using a sphere-decoding algorithm. It is shown that the proposed SST-TCM performs very closely to the Golden Space-Time Trellis Coded Modulation (GST-TCM) scheme, yetwith a much reduced decoding complexity thanks to its fast-decoding property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article we present a hybrid approach for automatic summarization of Spanish medical texts. There are a lot of systems for automatic summarization using statistics or linguistics, but only a few of them combining both techniques. Our idea is that to reach a good summary we need to use linguistic aspects of texts, but as well we should benefit of the advantages of statistical techniques. We have integrated the Cortex (Vector Space Model) and Enertex (statistical physics) systems coupled with the Yate term extractor, and the Disicosum system (linguistics). We have compared these systems and afterwards we have integrated them in a hybrid approach. Finally, we have applied this hybrid system over a corpora of medical articles and we have evaluated their performances obtaining good results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acquiring lexical information is a complex problem, typically approached by relying on a number of contexts to contribute information for classification. One of the first issues to address in this domain is the determination of such contexts. The work presented here proposes the use of automatically obtained FORMAL role descriptors as features used to draw nouns from the same lexical semantic class together in an unsupervised clustering task. We have dealt with three lexical semantic classes (HUMAN, LOCATION and EVENT) in English. The results obtained show that it is possible to discriminate between elements from different lexical semantic classes using only FORMAL role information, hence validating our initial hypothesis. Also, iterating our method accurately accounts for fine-grained distinctions within lexical classes, namely distinctions involving ambiguous expressions. Moreover, a filtering and bootstrapping strategy employed in extracting FORMAL role descriptors proved to minimize effects of sparse data and noise in our task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The work we present here addresses cue-based noun classification in English and Spanish. Its main objective is to automatically acquire lexical semantic information by classifying nouns into previously known noun lexical classes. This is achieved by using particular aspects of linguistic contexts as cues that identify a specific lexical class. Here we concentrate on the task of identifying such cues and the theoretical background that allows for an assessment of the complexity of the task. The results show that, despite of the a-priori complexity of the task, cue-based classification is a useful tool in the automatic acquisition of lexical semantic classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work briefly analyses the difficulties to adopt the Semantic Web, and in particular proposes systems to know the present level of migration to the different technologies that make up the Semantic Web. It focuses on the presentation and description of two tools, DigiDocSpider and DigiDocMetaEdit, designed with the aim of verifYing, evaluating, and promoting its implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past, research in ontology learning from text has mainly focused on entity recognition, taxonomy induction and relation extraction. In this work we approach a challenging research issue: detecting semantic frames from texts and using them to encode web ontologies. We exploit a new generation Natural Language Processing technology for frame detection, and we enrich the frames acquired so far with argument restrictions provided by a super-sense tagger and domain specializations. The results are encoded according to a Linguistic MetaModel, which allows a complete translation of lexical resources and data acquired from text, enabling custom transformations of the enriched frames into modular ontology components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Consideration of consumers’ demand for food quality entails several aspects. Quality itself is a complex and dynamic concept, and constantly evolving technical progress may cause changes in consumers’ judgment of quality. To improve our understanding of the factors influencing the demand for quality, food quality must be defined and measured from the consumer’s perspective (Cardello, 1995). The present analysis addresses the issue of food quality, focusing on pork—the food that respondents were concerned about. To gain insight into consumers’ demand, we analyzed their perception and evaluation and focused on their cognitive structures concerning pork quality. In order to more fully account for consumers’ concerns about the origin of pork, in 2004 we conducted a consumer survey of private households. The qualitative approach of concept mapping was used to uncover the cognitive structures. Network analysis was applied to interpret the results. In order to make recommendations to enterprises, we needed to know what kind of demand emerges from the given food quality schema. By establishing the importance and relative positions of the attributes, we find that the country of origin and butcher may be the two factors that have the biggest influence on consumers’ decisions about the purchase of pork.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.