926 resultados para Secondary species and climactic species
Resumo:
To identify the critical success factors in the adoption of energy efficiency actions in Brazilian hospitals and describe their behaviour are the objectives of this paper. In order to achieve these goals, a literature review was performed on green management and energy efficiency. This was the basis to define the questions of the interview script applied to two hospitals located in the state of Sao Paulo, Brazil. The interview script application was complemented by secondary data and direct observation. The results showed that: a) the studied hospitals are embracing environmental management actions more often and, whenever possible, energy efficiency actions are taken as well; and b) in the cases analysed top management support, commitment with the environment, green process design and employee empowerment were some of the most relevant critical success factors to the accomplishment of energy efficiency actions. These findings may be of interest to emerging countries, including BRICS (Brazil, Russia, India, China and South Africa).
Resumo:
Vibration monitoring requires acceleration transducers capable of providing data with high precision. Accelerometers are the most frequently used vibration transducers. Their calibration plays an important role in measuring vibrations and is a key component in ensuring the integrity of the vibration measurement. For managing secondary calibration data of accelerometers, a database computer system was implemented. The implementation of this software has been an important step forward in providing a wide range of analysis and display tools. This paper reviews the main concepts involving accelerometer secondary calibration and describes the tool developed and the methods used in its development. (C) 2013 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Measurements on polymers (Teflon FEP and Mylar) have shown that the secondary electron emission from uncharged surfaces exceeds that from surfaces containing a positive surface charge. The reduced emission of charged surfaces is due to recombination between electrons undergoing emission and trapped holes within the charged layer. During the experiments the surface of the material was kept at a negative potential to assure that all secondary electrons reaching the surface from within the material are actually emitted. An analysis of the results yielded the maximum escape depth of the secondary electrons, and showed that the ratio of the maximum escape depth of the secondaries from Mylar to the maximum escape depth from Teflon is almost the same as the ratio of the corresponding second crossover energies of this polymers.
Resumo:
Aspergillosis is caused by fungus of Aspergillus genus. Is a multifactorial secondary disease and occurs mainly to immunodeficiency. Goiter is the name to non-inflammatory and non-neoplasic thyroid growth which affecting the animal metabolism. In this report we describe a case of aspergillosis and colloidal goiter in a male Black-masked lovebird (Agapornis personata) diagnosed by post mortem exam. The bird was presented for examination due to severe respiratory signs. An initial palliative treatment was performed in order to relieve the symptoms. Despite this, the patient came to die without performing additional ancillary tests. On gross exam, a pulmonary nodule was observed from which we were able to isolate Aspergillus fumigatus on microbial culture. Histological assessment revealed pulmonary aspergilosis and colloid goiter. Based on histopathological and microbiological assessments we conclude that infection probably was secondary to colloid goiter.
Resumo:
Objective: This study evaluated the 56-month clinical performance of Class I and II resin composite restorations. Filtek P60 was compared with Filtek Z250, which are both indicated for posterior restorations but differ in terms of handling characteristics. The null hypothesis tested was that there is no difference in the clinical performance of the two resin composites in posterior teeth. Material and Methods: Thirty-three patients were treated by the same operator, who prepared 48 Class I and 42 Class II cavities, which were restored with Single Bond/Filtek Z250 or Single Bond/Filtek P60 restorative systems. Restorations were evaluated by two independent examiners at baseline and after 56 months, using the modified USPHS criteria. Data were analyzed statistically using Chi-square and Fisher's Exact tests (alpha=0.05). Results: After 56 months, 25 patients (31 Class I and 36 Class II) were analyzed. A 3% failure rate occurred due to secondary caries and excessive loss of anatomic form for P60. For both restorative systems, there were no significant differences in secondary caries and postoperative sensitivity. However, significant changes were observed with respect to anatomic form, marginal discoloration, and marginal adaptation. Significant decreases in surface texture were observed exclusively for the Z250 restorations. Conclusions: Both restorative systems can be used for posterior restorations and can be expected to perform well in the oral environment.
Resumo:
Analytic methods were applied and validated to measure residues of chlorfenvinphos, fipronil, and cypermethrin in meat and bovine fat, using the QuEChERS method and gas chromatography-mass spectrometry. For the meat, 2 g of sample, 4mL of acetonitrile, 1.6 g of MgSO4, and 0.4 g of NaCl were used in the liquid-liquid partition, while 80 mg of C18, 80 mg of primary and secondary amine and 150 mg of MgSO4 were employed in the dispersive solid-phase extraction. For the fat, 1 g of sample, 5 mL of hexane, 10 mL of water, 10 mL of acetonitrile, 4 g of MgSO4, and 0.5 g of NaCl were used in the liquid-liquid partition and 50 mg of primary and secondary amine and 150 mg of MgSO4 were used in the dispersive solid-phase extraction. The recovery percentages obtained for the pesticides in meat at different concentrations ranged from 81 to 129% with relative standard deviation below 27%. The corresponding results from the fat ranged from 70 to 123% with relative standard deviation below 25%. The methods showed sensitivity, precision, and accuracy according to EPA standards and quantification limits below the maximum residue limit established by European Union, except for chlorfenvinphos in the fat.
Resumo:
Plant secondary metabolites are a group of naturally occurring compound classes biosynthesized by differing biochemical pathways whose plant content and regulation is strongly susceptible to environmental influences and to potential herbal predators. Such abiotic and biotic factors might be specifically induced by means of various mechanisms, which create variation in the accumulation or biogenesis of secondary metabolites. Hence the dynamic aspect of bioactive compound synthesis and accumulation enables plants to communicate and react in order to overcome imminent threats. This contribution aims to review the most important mechanisms of various abiotic and biotic interactions, such as pathogenic microorganisms and herbivory, by which plants respond to exogenous influences, and will also report on time-scale variable influences on secondary metabolite profiles. Transmission of signals in plants commonly occurs by 'semiochemicals', which are comprised of terpenes, phenylpropanoids, benzenoids and other volatile compounds. Due to the important functions of volatile terpenes in communication processes of living organisms, as well as its emission susceptibility relative to exogenous influences, we also present different scenarios of concentration and emission variations. Toxic effects of plants vary depending on the level and type of secondary metabolites. In farming and cattle raising scenarios, the toxicity of plant secondary metabolites and respective concentration shifts may have severe consequences on livestock production and health, culminating in adverse effects on crop yields and/or their human consumers, or have an adverse economic impact. From a wider perspective, herbal medicines, agrochemicals or other natural products are also associated with variability in plant metabolite levels, which can impact the safety and reliable efficacy of these products. We also present typical examples of toxic plants which influence livestock production using Brazilian examples of toxicity of sapogenins and alkaloids on livestock to highlight the problem. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Introduction Endometrial ossification is an uncommon disease related to secondary infertility and its etiology and pathogenesis are controversial. More than 80% of reported cases occur after pregnancy. Case presentation A 33-year-old Caucasian woman was admitted with a history of secondary infertility and with a regular menstrual cycle. She reported a miscarriage at 12 weeks of gestation 7 years previously and subsequent dilatation and curettage in another medical facility. Vaginal ultrasound was performed and showed an intrauterine structure described as a hyperechogenic image suggesting calcification related to chronic endometritis. Office hysteroscopy revealed a wide endometrial cavity and proliferative endometrium, with a coral-like white plaque 1.5 cm in length on the right horn and posterior wall of the uterus. The lesion was treated by hysteroscopy without complications. Microscopic examination showed endometrial tissue with osseous metaplasia in the stroma. Nine months after the procedure, the patient became pregnant spontaneously. Conclusion In our patient, hysteroscopy was effective in the diagnosis and treatment of osseous metaplasia of the endometrium associated with infertility.