953 resultados para Second-order nonlinearity


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fourth-order partial differential equation (PDE) proposed by You and Kaveh (You-Kaveh fourth-order PDE), which replaces the gradient operator in classical second-order nonlinear diffusion methods with a Laplacian operator, is able to avoid blocky effects often caused by second-order nonlinear PDEs. However, the equation brought forward by You and Kaveh tends to leave the processed images with isolated black and white speckles. Although You and Kaveh use median filters to filter these speckles, median filters can blur the processed images to some extent, which weakens the result of You-Kaveh fourth-order PDE. In this paper, the reason why You-Kaveh fourth-order PDE can leave the processed images with isolated black and white speckles is analyzed, and a new fourth-order PDE based on the changes of Laplacian (LC fourth-order PDE) is proposed and tested. The new fourth-order PDE preserves the advantage of You-Kaveh fourth-order PDE and avoids leaving isolated black and white speckles. Moreover, the new fourth-order PDE keeps the boundary from being blurred and preserves the nuance in the processed images, so, the processed images look very natural.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Starting from Maxwell's equations, we use the reductive perturbation method to derive a second-order and a third-order nonlinear Schrodinger equation, describing ultrashort solitons in nonlinear left-handed metamaterials. We find necessary conditions and derive exact bright and dark soliton solutions of these equations for the electric and magnetic field envelopes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A theoretical analysis is reported in this paper to investigate the effect that a second harmonic signal which might be present at an amplifier’s input has on generating additional intermodulation products, particularly the third-order intermodulation (IM3) products. The analysis shows that the amplitude of an extra generated IM3 component is equal to the product of the fundamental amplitude, the second harmonic amplitude, and the second order Taylor series coefficient. The effect of the second order harmonic on the IM3 is examined through a simulated example of a 2.22-GHz 10-W Class-EF amplifier whereby the IM3 levels have been reduced by 2-3 dB after employing a second harmonic termination stub at the input.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Two novel effective-fourth-order (eighth-order) resonator based MASH (MultistAge noise SHaping) bandpass Σ-Δ modulators are introduced at the behavioural level and subsequently examined by simulations utilising the ALTA SPW environment. The considered bandpass configurations have in their loop filter a cascade of standard second-order resonator structures in order to achieve appropriate noise shaping. The quantisation noise in each stage is suppressed by feeding the error of each section into the input of the following stage. It is demonstrated in this paper that the quadruple effective-first-order cascade configuration has significantly better performance as well as conforming more closely with theory in comparison with the effective-second-order effective-second-order cascade. The superior performance of the former can be attributed to the cumulative effect of the multi-bit outputs as well as the presence of more notch filters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the theory of the Navier-Stokes equations, the proofs of some basic known results, like for example the uniqueness of solutions to the stationary Navier-Stokes equations under smallness assumptions on the data or the stability of certain time discretization schemes, actually only use a small range of properties and are therefore valid in a more general context. This observation leads us to introduce the concept of SST spaces, a generalization of the functional setting for the Navier-Stokes equations. It allows us to prove (by means of counterexamples) that several uniqueness and stability conjectures that are still open in the case of the Navier-Stokes equations have a negative answer in the larger class of SST spaces, thereby showing that proof strategies used for a number of classical results are not sufficient to affirmatively answer these open questions. More precisely, in the larger class of SST spaces, non-uniqueness phenomena can be observed for the implicit Euler scheme, for two nonlinear versions of the Crank-Nicolson scheme, for the fractional step theta scheme, and for the SST-generalized stationary Navier-Stokes equations. As far as stability is concerned, a linear version of the Euler scheme, a nonlinear version of the Crank-Nicolson scheme, and the fractional step theta scheme turn out to be non-stable in the class of SST spaces. The positive results established in this thesis include the generalization of classical uniqueness and stability results to SST spaces, the uniqueness of solutions (under smallness assumptions) to two nonlinear versions of the Euler scheme, two nonlinear versions of the Crank-Nicolson scheme, and the fractional step theta scheme for general SST spaces, the second order convergence of a version of the Crank-Nicolson scheme, and a new proof of the first order convergence of the implicit Euler scheme for the Navier-Stokes equations. For each convergence result, we provide conditions on the data that guarantee the existence of nonstationary solutions satisfying the regularity assumptions needed for the corresponding convergence theorem. In the case of the Crank-Nicolson scheme, this involves a compatibility condition at the corner of the space-time cylinder, which can be satisfied via a suitable prescription of the initial acceleration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the extension of a methodology to solve moving boundary value problems from the second-order case to the case of the third-order linear evolution PDE qt + qxxx = 0. This extension is the crucial step needed to generalize this methodology to PDEs of arbitrary order. The methodology is based on the derivation of inversion formulae for a class of integral transforms that generalize the Fourier transform and on the analysis of the global relation associated with the PDE. The study of this relation and its inversion using the appropriate generalized transform are the main elements of the proof of our results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This letter presents pseudolikelihood equations for the estimation of the Potts Markov random field model parameter on higher order neighborhood systems. The derived equation for second-order systems is a significantly reduced version of a recent result found in the literature (from 67 to 22 terms). Also, with the proposed method, a completely original equation for Potts model parameter estimation in third-order systems was obtained. These equations allow the modeling of less restrictive contextual systems for a large number of applications in a computationally feasible way. Experiments with both simulated and real remote sensing images provided good results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a procedure for obtaining a compact fourth order method to the steady 2D Navier-Stokes equations in the streamfunction formulation using the computer algebra system Maple. The resulting code is short and from it we obtain the Fortran program for the method. To test the procedure we have solved many cavity-type problems which include one with an analytical solution and the results are compared with results obtained by second order central differences to moderate Reynolds numbers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a numerical solution for the steady 2D Navier-Stokes equations using a fourth order compact-type method. The geometry of the problem is a constricted symmetric channel, where the boundary can be varied, via a parameter, from a smooth constriction to one possessing a very sharp but smooth corner allowing us to analyse the behaviour of the errors when the solution is smooth or near singular. The set of non-linear equations is solved by the Newton method. Results have been obtained for Reynolds number up to 500. Estimates of the errors incurred have shown that the results are accurate and better than those of the corresponding second order method. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider the Euclidean D-dimensional -lambda vertical bar phi vertical bar(4)+eta vertical bar rho vertical bar(6) (lambda,eta > 0) model with d (d <= D) compactified dimensions. Introducing temperature by means of the Ginzburg-Landau prescription in the mass term of the Hamiltonian, this model can be interpreted as describing a first-order phase transition for a system in a region of the D-dimensional space, limited by d pairs of parallel planes, orthogonal to the coordinates axis x(1), x(2),..., x(d). The planes in each pair are separated by distances L-1, L-2, ... , L-d. We obtain an expression for the transition temperature as a function of the size of the system, T-c({L-i}), i = 1, 2, ..., d. For D = 3 we particularize this formula, taking L-1 = L-2 = ... = L-d = L for the physically interesting cases d = 1 (a film), d = 2 (an infinitely long wire having a square cross-section), and for d = 3 (a cube). For completeness, the corresponding formulas for second-order transitions are also presented. Comparison with experimental data for superconducting films and wires shows qualitative agreement with our theoretical expressions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained that includes derivatives of the curvature. We analyze the form of the second field strength, G=partial derivative F+fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of F and quadratic contractions of G are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his generalized electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behavior at short distances as well as a meso-large distance modification.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A fourth-order numerical method for solving the Navier-Stokes equations in streamfunction/vorticity formulation on a two-dimensional non-uniform orthogonal grid has been tested on the fluid flow in a constricted symmetric channel. The family of grids is generated algebraically using a conformal transformation followed by a non-uniform stretching of the mesh cells in which the shape of the channel boundary can vary from a smooth constriction to one which one possesses a very sharp but smooth corner. The generality of the grids allows the use of long channels upstream and downstream as well as having a refined grid near the sharp corner. Derivatives in the governing equations are replaced by fourth-order central differences and the vorticity is eliminated, either before or after the discretization, to form a wide difference molecule for the streamfunction. Extra boundary conditions, necessary for wide-molecule methods, are supplied by a procedure proposed by Henshaw et al. The ensuing set of non-linear equations is solved using Newton iteration. Results have been obtained for Reynolds numbers up to 250 for three constrictions, the first being smooth, the second having a moderately sharp corner and the third with a very sharp corner. Estimates of the error incurred show that the results are very accurate and substantially better than those of the corresponding second-order method. The observed order of the method has been shown to be close to four, demonstrating that the method is genuinely fourth-order. © 1977 John Wiley & Sons, Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we study a Hořava-like 5-dimensional model in the context of braneworld theory. The equations of motion of such model are obtained and, within the realm of warped geometry, we show that the model is consistent if and only if λ takes its relativistic value 1. Furthermore, we show that the elimination of problematic terms involving the warp factor second order derivatives are eliminated by imposing detailed balance condition in the bulk. Afterwards, Israel's junction conditions are computed, allowing the attainment of an effective Lagrangian in the visible brane. In particular, we show that the resultant effective Lagrangian in the brane corresponds to a (3 + 1)-dimensional Hořava-like model with an emergent positive cosmological constant but without detailed balance condition. Now, restoration of detailed balance condition, at this time imposed over the brane, plays an interesting role by fitting accordingly the sign of the arbitrary constant β, insuring a positive brane tension and a real energy for the graviton within its dispersion relation. Also, the brane consistency equations are obtained and, as a result, the model admits positive brane tensions in the compactification scheme if, and only if, β is negative and the detailed balance condition is imposed. © 2013 Springer-Verlag Berlin Heidelberg and Società Italiana di Fisica.