939 resultados para Salts in soils
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
The effects of metal contamination on natural populations of Collembola in soils from five sites in the Wolverhampton area ( West Midlands, England) were examined. Analysis revealed that metal concentrations were elevated above background levels at all sites. One location in particular (Ladymoor, a former smelting site) was highly contaminated with Cd, Cu, Pb and Zn at more than 20 times background levels. Biodiversity indices ( Shannon - Weiner, Simpson index, Margalef index, alpha index, species richness, Shaneven ( evenness) and Berger - Parker dominance) were calculated. Of these indices, estimates of species richness and evenness were most effective at highlighting the differences between the Collembola communities. Indeed, the highest number of species were found at the most contaminated site, although the Collembola population also had a comparatively low evenness value, with just two species dominating. The number of individuals per species were allocated into geometric classes and plotted against the cumulative number of species as a percentage. At Ladymoor, there were more geometric classes, and the slope of the line was shallower than at the other four sites. This characteristic is a feature of polluted sites, where a few species are dominant and most species are rare. The Ladymoor soil also had a dominance of Isotomurus palustris, and was the only site in which Ceratophysella denticulata was found. Previous studies have shown that these two species are often found in sites subject to high metal contamination. Survival and reproduction of the "standard'' test springtail, Folsomia candida (Willem), were determined in a 4 week exposure test to soils from all five sites. Mortality was significantly increased in adults and reproduction significantly lower in the Ladymoor soil in comparison to the other four sites. This study has shown that severe metal contamination can be related to the population structure of Collembola in the field, and performance of F. candida ( in soils from such sites) in the laboratory.
Resumo:
The influence of soil organisms on metal mobility and bioavailability in soils is not currently fully understood. We conducted experiments to determine whether calcium carbonate granules secreted by the earthworm Lumbricus terrestris could incorporate and immobilise lead in lead- and calcium- amended artificial soils. Soil lead concentrations were up to 2000 mg kg-1 and lead:calcium ratios by mass were 0.5-8. Average granule production rates of 0.39 + 0.04 mgcalcite earthworm-1 day-1 did not vary with soil lead concentration. The lead:calcium ratio in granules increased significantly with that of the soil (r2 = 0.81, p = 0.015) with lead concentrations in granules reaching 1577 mg kg-1. X-ray diffraction detected calcite and aragonite in the granules with indications that lead was incorporated into the calcite at the surface of the granules. In addition to the presence of calcite and aragonite X-ray absorption spectroscopy indicated that lead was present in the granules mainly as complexes sorbed to the surface but with traces of lead-bearing calcite and cerussite. The impact that lead-incorporation into earthworm calcite granules has on lead mobility at lead-contaminated sites will depend on the fraction of total soil lead that would be otherwise mobile.
Resumo:
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants that frequently accumulate in soils. There is therefore a requirement to determine their levels in contaminated environments for the purposes of determining impacts on human health. PAHs are a suite of individual chemicals, and there is an ongoing debate as to the most appropriate method for assessing the risk to humans from them. Two methods predominate: the surrogate marker approach and the toxic equivalency factor. The former assumes that all chemicals in a mixture have an equivalent toxicity. The toxic equivalency approach estimates the potency of individual chemicals relative to the usually most toxic Benzo(a)pyrene. The surrogate marker approach is believed to overestimate risk and the toxic equivalency factor to underestimate risk. When analysing the risks from soils, the surrogate marker approach is preferred due to its simplicity, but there are concerns because of the potential diversity of the PAH profile across the range of impacted soils. Using two independent data sets containing soils from 274 sites across a diverse range of locations, statistical analysis was undertaken to determine the differences in the composition of carcinogenic PAH between site locations, for example, rural versus industrial. Following principal components analysis, distinct population differences were not seen between site locations in spite of large differences in the total PAH burden between individual sites. Using all data, highly significant correlations were seen between BaP and other carcinogenic PAH with the majority of r2 values > 0.8. Correlations with the European Food Standards Agency (EFSA) summed groups, that is, EFSA2, EFSA4 and EFSA8 had even higher correlations (r2 > 0.95). We therefore conclude that BaP is a suitable surrogate marker to represent mixtures of PAH in soil during risk assessments.
Resumo:
Dissolved organic carbon (DOC) in acid-sensitive upland waters is dominated by allochthonous inputs from organic-rich soils, yet inter-site variability in soil DOC release to changes in acidity has received scant attention in spite of the reported differences between locations in surface water DOC trends over the last few decades. In a previous paper, we demonstrated that pH-related retention of DOC in O horizon soils was influenced by acid-base status, particularly the exchangeable Al content. In the present paper, we investigate the effect of sulphate additions (0–437 μeq l−1) on DOC release in the mineral B horizon soils from the same locations. Dissolved organic carbon release decreased with declining pH in all soils, although the shape of the pH-DOC relationships differed between locations, reflecting the multiple factors controlling DOC mobility. The release of DOC decreased by 32–91% in the treatment with the largest acid input (437 μeq l−1), with the greatest decreases occurring in soils with very small % base saturation (BS, <3%) and/or large capacity for sulphate (SO42−) retention (up to 35% of added SO42−). The greatest DOC release occurred in the soil with the largest initial base status (12% BS). These results support our earlier conclusions that differences in acid-base status between soils alter the sensitivity of DOC release to similar sulphur deposition declines. However,superimposed on this is the capacity of mineral soils to sorb DOC and SO42−, and more work is needed to determine the fate of sorbed DOC under conditions of increasing pH and decreasing SO42−.
Resumo:
On-going human population growth and changing patterns of resource consumption are increasing global demand for ecosystem services, many of which are provided by soils. Some of these ecosystem services are linearly related to the surface area of pervious soil, whereas others show non-linear relationships, making ecosystem service optimization a complex task. As limited land availability creates conflicting demands among various types of land use, a central challenge is how to weigh these conflicting interests and how to achieve the best solutions possible from a perspective of sustainable societal development. These conflicting interests become most apparent in soils that are the most heavily used by humans for specific purposes: urban soils used for green spaces, housing, and other infrastructure and agricultural soils for producing food, fibres and biofuels. We argue that, despite their seemingly divergent uses of land, agricultural and urban soils share common features with regards to interactions between ecosystem services, and that the trade-offs associated with decision-making, while scale- and context-dependent, can be surprisingly similar between the two systems. We propose that the trade-offs within land use types and their soil-related ecosystems services are often disproportional, and quantifying these will enable ecologists and soil scientists to help policy makers optimizing management decisions when confronted with demands for multiple services under limited land availability.
Resumo:
An investigation was made of the influence of alkaline extraction on the characteristics of humic substances extracted from Brazilian soil samples. Humic substances (HS) from seven different soils samples collected in Brazil were extracted using the procedure recommended by the International Humic Substances Society (IHSS). Soils, HS and humins were characterized by thermogravimetry and differential thermal analysis. About 8 mg of each material (soil, HS and humin) were placed in a platinum crucible and heated continuously from 20 to 750 degrees C at a heating rate of 10 degrees C min(-1) in an atmosphere of synthetic air (100 ml min(-1)). A thermal analysis revealed a difference between the content and structural characteristics of organic matter present in HS and humin fractions in relation to their soils. The results indicated that alkaline extraction alters the characteristics of humic substances during the extraction process, underlining the importance of developing methodologies and analytical procedures that allow organic matter in soils to be studied without extracting it. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The study objective was to evaluate the influence of the addition of soybeans residues on the chemical properties of Eutrudox and Hapludox soils. Soybean leaves and stems were incubated for 0-200 days. The statistical model used was a 5×4 factorial (plantxincubation period) with three replications. Soils without addition of plants were used as controls. Total Organic Carbon (TOC), Soluble Carbon (SC), Total Carbohydrates (TC), Humic Acid (HA), Fulvic Acid (FA) and Humification Rate (HR) were determined. Higher values of chemical attributes (TOC, SC and TC) were found in the Eutrudox soil than in the Hapludox soil and these values increased significantly (p<0.05) after 50 days of incubation in relation to the initial period. The TOC, SC and TC increased in soils amended with soybean plants when compared to controls without plants. HA and FA contents and HR were not affected by the addition of soybean residues. Maximum HA contents were found after 100 days and maximum FA contents and HR were found after 200 days incubation in both soils. It can be concluded that the addition of soybean residues increased the soil chemical properties when compared to the controls. © 2013 Academic Journals Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Eucalyptus plantations have seldom responded to N fertilization in tropical and subtropical regions of Brazil. This implies that rates of N mineralization have been adequate to supply tree needs. However, subsequent crop rotations with low N fertilization may result in declining concentrations of organic and potentially mineralizable N (N-0), and consequent loss of wood productivity. This study investigated (a) in situ N mineralization and N-0 in soils of eucalypt plantations in Sao Paulo state, Brazil; (b) tree growth responses to N fertilizer applied 6-18 months after planting; and (c) the relationships between N-0,N- other soil attributes and tree growth. We established eleven N fertilizer trials (maximum 240 kg ha(-1) of N) in E. grandis and E. grandis x urophylla plantations. The soil types at most sites were Oxisols and Quartzipsamments, with a range of organic matter (18 to 55 g kg(-1)) and clay contents (8% to 67%) in the 0-20 cm layer. Concentrations of N-0 were measured using anaerobic incubation on soil samples collected every three months (different seasons). The samples collected in spring and summer had N-0 140-400 kg ha(-1) (10%-19% total soil N), which were best correlated with soil texture and organic matter content. Rates of in situ net N mineralization (0-20 cm) ranged from 100 to 200 kg ha(-1) year(-1) and were not correlated with clay, total N, or N-0. These high N mineralization rates resulted in a low response to N fertilizer application during the early ages of stand growth, which were highest on sandy soils. At the end of the crop rotation, the response to N fertilizer was negligible and non-significant at all sites.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We compared the microbial community composition in soils from the Brazilian Amazon with two contrasting histories; anthrosols and their adjacent non-anthrosol soils of the same mineralogy. The anthrosols, also known as the Amazonian Dark Earths or terra preta, were managed by the indigenous pre-Colombian Indians between 500 and 8,700 years before present and are characterized by unusually high cation exchange capacity, phosphorus (P), and calcium (Ca) contents, and soil carbon pools that contain a high proportion of incompletely combusted biomass as biochar or black carbon (BC). We sampled paired anthrosol and unmodified soils from four locations in the Manaus, Brazil, region that differed in their current land use and soil type. Community DNA was extracted from sampled soils and characterized by use of denaturing gradient gel electrophoresis (DGGE) and terminal restriction fragment length polymorphism. DNA bands of interest from Bacteria and Archaea DGGE gels were cloned and sequenced. In cluster analyses of the DNA fingerprints, microbial communities from the anthrosols grouped together regardless of current land use or soil type and were distinct from those in their respective, paired adjacent soils. For the Archaea, the anthrosol communities diverged from the adjacent soils by over 90%. A greater overall richness was observed for Bacteria sequences as compared with those of the Archaea. Most of the sequences obtained were novel and matched those in databases at less than 98% similarity. Several sequences obtained only from the anthrosols grouped at 93% similarity with the Verrucomicrobia, a genus commonly found in rice paddies in the tropics. Sequences closely related to Proteobacteria and Cyanobacteria sp. were recovered only from adjacent soil samples. Sequences related to Pseudomonas, Acidobacteria, and Flexibacter sp. were recovered from both anthrosols and adjacent soils. The strong similarities among the microbial communities present in the anthrosols for both the Bacteria and Archaea suggests that the microbial community composition in these soils is controlled more strongly by their historical soil management than by soil type or current land use. The anthrosols had consistently higher concentrations of incompletely combusted organic black carbon material (BC), higher soil pH, and higher concentrations of P and Ca compared to their respective adjacent soils. Such characteristics may help to explain the longevity and distinctiveness of the anthrosols in the Amazonian landscape and guide us in recreating soils with sustained high fertility in otherwise nutrient-poor soils in modern times.
Resumo:
So Paulo is the largest city in Brazil and South America with about 20 million inhabitants in the metropolitan area, more than nine million motor vehicles and intense industrial activity, which are responsible for increasing pollution in the region. Nevertheless, little is known concerning metal and semi-metal content in the soils of this metropolitan region. This type of information could be extremely useful as a fingerprint of environmental pollution. The present study determined the elements As, Ba, Co, Cr, Sb, and Zn concentrations in soils adjacent to avenues of highly dense traffic in So Paulo city to assess their levels and possible sources. The analytical technique employed was Instrumental neutron activation analysis. The results showed, except for Co, concentration levels higher than the reference values for soils of So Paulo, according to the Environmental Protection Agency of the State of So Paulo guidelines. When compared to similar studies in other cities around the world, So Paulo soils presented higher levels, probably due to its high density traffic and industrial activity. The concentrations obtained for As and Cr indicate anthropogenic origin. The high levels of the traffic-related elements Ba, Sb, and Zn in soils nearby high density traffic avenues indicate they may originate from vehicular exhausts.
Resumo:
Scaling methods allow a single solution to Richards' equation (RE) to suffice for numerous specific cases of water flow in unsaturated soils. During the past half-century, many such methods were developed for similar soils. In this paper, a new method is proposed for scaling RE for a wide range of dissimilar soils. Exponential-power (EP) functions are used to reduce the dependence of the scaled RE on the soil hydraulic properties. To evaluate the proposed method, the scaled RE was solved numerically considering two test cases: infiltration into relatively dry soils having initially uniform water content distributions, and gravity-dominant drainage occurring from initially wet soil profiles. Although the results for four texturally different soils ranging from sand to heavy clay (adopted from the UNSODA database) showed that the scaled solution were invariant for a wide range of flow conditions, slight deviations were observed when the soil profile was initially wet in the infiltration case or deeply wet in the drainage case. The invariance of the scaled RE makes it possible to generalize a single solution of RE to many dissimilar soils and conditions. Such a procedure reduces the numerical calculations and provides additional opportunities for solving the highly nonlinear RE for unsaturated water flow in soils.