998 resultados para SPACE-CHARGE ELECTRETS
Resumo:
8
Resumo:
1
Resumo:
10
Resumo:
13
Resumo:
5
Resumo:
Otto-von-Guericke-Universität Magdeburg, Fakultät für Naturwissenschaften, Univ., Dissertation, 2015
Resumo:
Die Bachelorarbeit besteht aus der Übersetzung des NASA-Berichtes „Pioneering Space: NASA’s Next Steps on the Path to Mars“ vom Englischen ins Deutsche und einer Textanalyse nach dem Analysemodell von Christiane Nord. Dieser Analyseansatz wird grob nach den sog. textexternen und textinternen Faktoren aufgeteilt. Zu den Besonderheiten und Herausforderungen der Übersetzung werden u.a. das hohe fachsprachliche Textniveau sowie diverse Abkürzungen und Abteilungsnamen innerhalb der NASA, die im Bericht auftauchen, gehören. Da darüber hinaus die Berichte und Kommunikation in der Weltraumszene hauptsächlich in englischer Sprache erfolgt, muss ein Kompromiss gefunden werden, um die Wörter so im Text einzubringen, dass der Textfluss nicht übertrieben gestört wird.
Resumo:
This work describes the spatial-temporal variation of the relative abundance and size of Limnoperna fortunei (Dunker, 1857) collected in São Gonçalo Channel through bottom trawl with a 0.5 cm mesh, at depths between 3 and 6 m. The estimative of mean relative abundance (CPUE) ranged from 2,425.3 individuals per drag (ind./drag) in the spring to 21,715.0 ind./drag in the fall, with an average of 9,515.3 ind./drag throughout the year. The estimated mean density of L. fortunei for the deep region of São Gonçalo Channel ranged from 1.2 to 10.3 ind./m², and it was recorded a maximum density of 84.9 ind./m² in the fall of 2008. The method of sampling using bottom trawl enabled the capture of L. fortunei under the soft muddy bottom of the channel, in different sizes ranging from 0.4 to 3.2 cm. This shows that the structure of the L. fortunei adult population under the bottom of the São Gonçalo Channel is composed mostly of small individuals (<1.4 cm), which represent up to 74% of the population collected.
Resumo:
3, Text
Resumo:
An algebraic decay rate is derived which bounds the time required for velocities to equilibrate in a spatially homogeneous flow-through model representing the continuum limit of a gas of particles interacting through slightly inelastic collisions. This rate is obtained by reformulating the dynamical problem as the gradient flow of a convex energy on an infinite-dimensional manifold. An abstract theory is developed for gradient flows in length spaces, which shows how degenerate convexity (or even non-convexity) | if uniformly controlled | will quantify contractivity (limit expansivity) of the flow.
Resumo:
We quantify the long-time behavior of a system of (partially) inelastic particles in a stochastic thermostat by means of the contractivity of a suitable metric in the set of probability measures. Existence, uniqueness, boundedness of moments and regularity of a steady state are derived from this basic property. The solutions of the kinetic model are proved to converge exponentially as t→ ∞ to this diffusive equilibrium in this distance metrizing the weak convergence of measures. Then, we prove a uniform bound in time on Sobolev norms of the solution, provided the initial data has a finite norm in the corresponding Sobolev space. These results are then combined, using interpolation inequalities, to obtain exponential convergence to the diffusive equilibrium in the strong L¹-norm, as well as various Sobolev norms.